133 research outputs found

    Ecosystem restoration strengthens pollination network resilience and function.

    Get PDF
    Land degradation results in declining biodiversity and the disruption of ecosystem functioning worldwide, particularly in the tropics. Vegetation restoration is a common tool used to mitigate these impacts and increasingly aims to restore ecosystem functions rather than species diversity. However, evidence from community experiments on the effect of restoration practices on ecosystem functions is scarce. Pollination is an important ecosystem function and the global decline in pollinators attenuates the resistance of natural areas and agro-environments to disturbances. Thus, the ability of pollination functions to resist or recover from disturbance (that is, the functional resilience) may be critical for ensuring a successful restoration process. Here we report the use of a community field experiment to investigate the effects of vegetation restoration, specifically the removal of exotic shrubs, on pollination. We analyse 64 plant-pollinator networks and the reproductive performance of the ten most abundant plant species across four restored and four unrestored, disturbed mountaintop communities. Ecosystem restoration resulted in a marked increase in pollinator species, visits to flowers and interaction diversity. Interactions in restored networks were more generalized than in unrestored networks, indicating a higher functional redundancy in restored communities. Shifts in interaction patterns had direct and positive effects on pollination, especially on the relative and total fruit production of native plants. Pollinator limitation was prevalent at unrestored sites only, where the proportion of flowers producing fruit increased with pollinator visitation, approaching the higher levels seen in restored plant communities. Our results show that vegetation restoration can improve pollination, suggesting that the degradation of ecosystem functions is at least partially reversible. The degree of recovery may depend on the state of degradation before restoration intervention and the proximity to pollinator source populations in the surrounding landscape. We demonstrate that network structure is a suitable indicator for pollination quality, highlighting the usefulness of interaction networks in environmental management

    Emergence of Civilization, Changes in Fluvio-Deltaic Style, and Nutrient Redistribution Forced by Holocene Sea-Level Rise

    Get PDF
    During the mid-Holocene, the first large-scale civilizations emerged in lower alluvial systems after a marked decrease in sea-level rise at 7–6 kyr. We show that as the landscapes of deltas and lower alluvial plains adjusted to this decrease in the rate of relative sea-level rise, the abundance and location of resources available for human exploitation changed as did the network of waterways. This dynamic environmental evolution contributed to archaeological changes in the three fluvio-deltaic settings considered herein: Egypt, Mesopotamia, and the Huang He in China. Specifically, an increase in the scale and intensity of agricultural practice, and the focussing of power toward a single city can be interpreted as responses to these environmental changes. Other archaeological observations, and the cultural trajectories leading to the formation of the Primary States also need to be considered in light of these evolving landscapes

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Biological invasions in World Heritage Sites: current status and a proposed monitoring and reporting framework

    Get PDF
    UNESCO World Heritage Sites (WHS) are areas of outstanding universal value and conservation importance. They are, however, threatened by a variety of global change drivers, including biological invasions. We assessed the current status of biological invasions and their management in 241 natural and mixed WHS globally by reviewing documents collated by UNESCO and IUCN. We found that reports on the status of biological invasions in WHS were often irregular or inconsistent. Therefore, while some reports were very informative, they were hard to compare because no systematic method of reporting was followed. Our review revealed that almost 300 different invasive alien species (IAS) were considered as a threat to just over half of all WHS. Information on IAS management undertaken in WHS was available for fewer than half of the sites that listed IAS as a threat. There is clearly a need for an improved monitoring and reporting system for biological invasions in WHS and likely the same for other protected areas globally. To address this issue, we developed a new framework to guide monitoring and reporting of IAS in protected areas building on globally accepted standards for IAS assessments, and tested it on seven WHS. The framework requires the collation of information and reporting on pathways, alien species presence, impacts, and management, the estimation of future threats and management needs, assessments of knowledge and gaps, and, using all of this information allows for an overall threat score to be assigned to the protected area. This new framework should help to improve monitoring of IAS in protected areas moving forward

    Endemic, endangered, and evolutionarily significant: Cryptic lineages in Seychelles’ frogs

    Get PDF
    Cryptic diversity that corresponds with island origin has been previously reported in the endemic, geographically restricted sooglossid frogs of the Seychelles archipelago. The evolutionary pattern has not been fully explored, and given current amphibian declines and the increased extinction risk faced by island species, we sought to identify evolutionarily significant units (ESUs) to address conservation concerns for these highly threatened anurans. We obtained genetic data for two mitochondrial (mtDNA) and four nuclear (nuDNA) genes from all known populations of sooglossid frog (the islands of Mahé, Praslin, and Silhouette) to perform phylogenetic analyses and construct nuDNA haplotype networks. Bayesian and maximum likelihood analyses of mtDNA support monophyly and molecular differentiation of populations in all species that occur on multiple islands. Haplotype networks using statistical parsimony revealed multiple high-frequency haplotypes shared between islands and taxa, in addition to numerous geographically distinct (island-specific) haplotypes for each species. We consider each island-specific population of sooglossid frog as an ESU and advise conservation managers to do likewise. Furthermore, our results identify each island lineage as a candidate species, evidence for which is supported by Bayesian Poisson Tree Processes analyses of mtDNA, and independent analyses of mtDNA and nuDNA using the multispecies coalescent. Our findings add to the growing understanding of the biogeography and hidden diversity within this globally important region

    pSESYNTH project: Community mobilization for a multi-disciplinary paleo database of the Global South

    Get PDF
    How to enhance paleoscientific research, collaboration and application in the Global South? The INQUA-funded multi-year pSESYNTH project envisions the first multi-disciplinary Holocene paleo database through a collaborative vision for past human-environmental systems in the Global South, and their future sustainability
    corecore