43 research outputs found

    NIPPLE DISCHARGE

    Get PDF
    According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%)

    ПОВЫШЕНИЕ СЕМЕННОЙ ПРОДУКТИВНОСТИ РОДИТЕЛЬСКОЙ ЛИНИИ ГИБРИДА F1 КАПУСТЫ БЕЛОКОЧАННОЙ ПОД ДЕЙСТВИЕМ СТЕРОИДНЫХ ГЛИКОЗИДОВ

    Get PDF
    Development of F1 cabbage hybrids is concerned to difficulties of artificial pollination, low ability to developovary leading to low seed productivity in parental lines. The aim of the study is to improve the seed productivity of self-pollinated parental line 3/14C for F1 cabbage hybrid ‘Krasotka’. Secondary plant metabolites such as steroid glycosides can help overcome these difficulties and increase the seed productivity (Blandinskaya et al., 2013). 3/14C-line was propagated by backcrossing flowers in bud stage with artificial self-pollination, using water solutions of steroid glycosides ‘Moldstim’ and ‘Melongozid’ (in concentrations 0.1%, 0.01%, 0.001% and 0.0001%). Seed productivity was evaluated according to methods that were elaborated earlier (Bukharov A.F. et al., 2011, 2013). It was established that all parameters of seed formation and development were increased significantly under treatment of steroid glycosides ‘Moldstim’ and ‘Melongozid’ in mentioned concentration. Differences were significant at the 5%-level of significance. Concentration of 0.001% was more effective than other both preparations. These preparations stimulated all phases of seed development. Number of fruits was increased by 16-39%, a number of seeds per one the pod was also increased by 17-38%, mass of 1000 seeds was increased by 9-12%. Thus, the seed productivity of parental line 3/14C F1cabbage hybrid named ‘Krasotka’ was increased by 44 to 105% as result of the action of steroid glycosides. Thus, ‘Moldstim’ and ‘Melongozid’ in concentration of 0.001% can be recommend as physiological stimulators to improve seed productivity in parental lines necessary for development of F1 cabbage hybrids.Получение F1 гибридов капусты белокочанной связано с трудностями принудительного опыления: слабой завязываемостью семян и низкой семенной продуктивностью исходных родительских линий. Цель настоящей работы: повысить семенную продуктивность самонесовместимой родительской линии 3/14С F1 гибрида капусты белокочанной Красотка с использованием вторичных метаболитов растений – стероидных гликозидов. Эксперимент провели в 2013-2015 годах на базе ВНИИ овощеводства. Размножение линии 3/14С осуществляли путем инцухтирования цветков в состоянии бутона, используя в качестве стимулирующих факторов водные растворы стероидных гликозидов молдстима и мелонгозида в концентрациях 0,1%, 0,01%, 0,001% и 0,0001%. Установлено, что стероидные гликозиды молдстим и мелонгозид в исследуемых концентрациях существенно повышают все показатели образования и развития семени. Положительные эффекты препаратов проявились на всех этапах опыления-оплодотворения и развития семени и выразились в существенном повышении всех параметров семенной продуктивности. Различия были существенны на 5%-ном уровне значимости. Наиболее эффективной для обоих препаратов была концентрация 0,001%. Завязываемость плодов выросла на 16-39%, осеменённость плода – на 17-38%, масса 1000 семян – на 9-12%. В результате семенная продуктивность родительской линии3/14С F1 гибрида капусты белокочанной Красотка увеличилась на 44-105%. Следовательно, препараты молдстим и мелонгозид (в концентрации 0,001%) можно рекомендовать как физиологические стимуляторы для повышения семенной продуктивности самонесовместимых линий в процессе получения F1 гибридов капусты белокочанной методом принудительного опыления

    Описание клинической картины и оценка функциональной активности канала CFTR у пациента с комплексным аллелем [S466X; R1070Q]

    Get PDF
    The presence of pathogenic variants in the CFTR gene causes cystic fibrosis (CF) through various molecular mechanisms that affect the formation and functional activity of the CFTR chloride channel. An important factor affecting the phenotypic manifestations of CF and the effectiveness of targeted therapy is the presence of complex alleles with > 2 consecutive mutations per 1 allele, or in the cis position. The influence of complex alleles on the manifestations of CF has not been sufficiently studied globally due to the small number of studies.The aim of the study was to investigate the influence of the complex allele [S466X; R1070Q] on the phenotypic manifestations of CF and the effectiveness of targeted therapy in a model of intestinal organoids from a patient with [S466X; R1070Q]/CFTRdele2,3 genotype.Methods. We used medical history data, intestinal current measurement, intestinal organoid method, and forskolin test.Results. The progressive nature of the disease with a clear degradation of lung function was established. The ICM method showed absent chloride channel function. The tests on the culture of organoids obtained from the intestinal tissue indicated a complete loss of the chloride channel function. In addition, the complex allele [S466X; R1070Q] was insensitive to all targeted drugs tested.Conclusion. The complex allele [S466X; R1070Q] causes a complete loss of the functional CFTR protein and is not sensitive to any of the approved targeted drugs.Наличие патогенных вариантов в гене CFTR вызывает муковисцидоз (МВ) посредством различных молекулярных механизмов, оказывающих влияние на образование и функциональную активность хлорного канала CFTR. Важным фактором, влияющим на фенотипические проявления МВ и эффективность таргетной терапии, является наличие комплексных аллелей — > 2 последовательных мутаций на 1-м аллеле, или в цис-положении. Влияние комплексных аллелей на проявления МВ в мире изучено недостаточно из-за небольшого количества проведенных исследований.Целью исследования явилось изучение влияния комплексного аллеля [S466X; R1070Q] на фенотипические проявления МВ и эффективность таргетной терапии на модели кишечных органоидов у пациента с генотипом [S466X; R1070Q]/CFTRdele2,3.Материалы и методы. Использовались данные истории болезни пациента, метод определения разницы кишечных потенциалов (ОРКП), метод кишечных органоидов, форсколиновый тест.Результаты. Установлен прогрессирующий характер заболевания с явной деградацией легочной функции. При использовании метода ОРКП показано отсутствие функции хлорного канала. Проведенные на полученной из ткани кишечника культуре органоидов тесты свидетельствуют о полной утрате функции хлорного канала. Кроме того, комплексный аллель [S466X; R1070Q] оказался нечувствительным ко всем протестированным таргетным препаратам.Заключение. Установлено, что комплексный аллель [S466X; R1070Q] вызывает полную утрату функционального белка CFTR и нечувствителен к действию ни одного из зарегистрированных таргетных препаратов

    Использование функциональных тестов для оценки остаточной активности канала CFTR и индивидуального подбора эффективных CFTR-модуляторов для лечения пациентов с муковисцидозом с «мягким» и «тяжелым» генетическими вариантами

    Get PDF
    Intestinal current measurement (ICM) and forskolin-induced swelling (FIS) assay in human intestinal organoids from rectal biopsies of cystic fibrosis (CF) patients are the new functional tests for assessment of CFTR channel activity that are widely used in the leading laboratories worldwide for scientific and clinical studies.The aim of the study was to assess the use of the new functional tests in adult CF patients with identified N1303K and R334W CFTR gene variants.Methods. Rectal suction biopsies were obtained from the two CF patients aged 36 and 27 years with N1303K/3821delT and R334W/F508del CFTR mutations, respectively. Results of the ICM and FIS assay in intestinal organoids were compared to the clinical data.Results. ICM has demonstrated that R334W is a ‘mild’ genetic variant with high residual CFTR channel activity. At the same time, N1303K is a ‘severe’ genetic variant and leads to a severe loss of CFTR channel function. These findings correlate with the clinical data. CFTR modulators compensate for the reduced activity of the R334W CFTR variant, as shown by the FIS assay. But there was a limited response of the forskolin-stimulated organoids to VX-770 potentiator and VX-809 corrector in the cells with N1303K genetic variant.Conclusion. ICM and FIS assay in human intestinal organoids are reliable methods for quantification of CFTR channel activity. They can also predict the efficacy of the targeted therapy in CF patients in vivo.Новые функциональные методы исследования активности канала CFTR – определение разности кишечных потенциалов (ОРКП) и форсколиновый тест на кишечных органоидах, получаемых из ректальных биоптатов больных муковисцидозом (МВ), приняты в ведущих лабораториях мира для научной и клинической работы.Целью исследования явилась оценка возможности применения новейших функциональных методик у взрослых больных МВ – носителей генетических вариантов гена CFTR – N1303K и R334W.Материалы и методы. Получены ректальные биоптаты у пациенток с МВ (n = 2) в возрасте 36 и 27 лет с генотипом CFTR R334W/F508del и N1303K/3821delT соответственно. Проведены ОРКП и форсколиновый тест на кишечных органоидах; полученные результаты сопоставлены с клиническими данными.Результаты. По результатам ОРКП подтверждено, что генетический вариант R334W является «мягким», с сохранением высокой остаточной функциональной активности канала CFTR, тогда как генетический вариант N1303K является «тяжелым» и приводит к утрате рабочего белка CFTR, что соответствует представленной клинической картине. Результаты форсколинового теста свидетельствуют о том, что вариант R334W хорошо поддается коррекции CFTR-модуляторами. Потенциатор VX-770 и корректор VX-809 оказывают слабое действие на стимуляцию форсколином органоидов при генетическом варианте N1303K.Заключение. Использование метода ОРКП и форсколинового теста на кишечных органоидах позволяет количественно оценить работу белка CFTR и in vitro определить эффективность таргетной терапии у пациентов с МВ

    Fungal Planet description sheets: 1284–1382

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii fromagrassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis oncalcareoussoil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.)ondeadstemsof Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broad leaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.)from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), fromdeadculmsof Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Saro cladium junci, Zaanenomyces moderatricis academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.)from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.)fromleavesof Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.)from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from abio film covering adeteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis onlitterinamixedforest, Papiliotrema horticola from Malus communis , Paramacroventuria ribis (incl. Paramacroventuria gen. nov.)fromleaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii , Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi oncorticatedwood. UK, Parasitella quercicola from Quercus robur. USA , Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.)fromoffice dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.)fromatombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from airinmen'slockerroomand Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans , Micropsalliota albofelina on soil in tropical evergreen mixed forest sand Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes

    Терапевтическая эффективность внутриартериального введения нейральных прогениторных клеток, полученных из индуцированных плюрипотентных стволовых клеток, при остром экспериментальном ишемическом инсульте у крыс

    Get PDF
    Aim. Neural progenitor cells (NPC) are used for the development of cell therapies of neurological diseases. Their stereotaxic transplantation in the middle cerebral artery occlusion (MCAO) model imitating ischemic stroke results in symptom aleviation. However, exploration of less invasive transplantation options is essential, because stereotaxic transplantation is a complex procedure and can be applied to humans only by vital indications in a specialized neurological ward. The aim of the present study was to evaluate the efficacy of cell therapy of the experimental ischemic stroke by the intra-arterial transplantation of NPC.Materials and methods. NPC for transplantation (IPSC-NPC) were derived by two-stage differentiation of cells of a stable line of human induced pluripotent stem cells. Stroke modeling in rats was carried out by transitory 90 min endovascular MCAO by a silicon-tipped filament. NPC were transplanted 24 hours after MCAO. Repetitive magnetic resonance tomography of experimental animals was made with the Bruker BioSpin ClinScan tomograph with 7 Tl magnetic field induction. Animal survival rate and neurological deficit (using mNSS standard stroke severity scale) were evaluated at the 1st (before IPSC-NPC transplantation), 7th and 14th day after transplantation. Histological studies were carried out following standard protocols.Results. Intra-arterial transplantation of 7 × 105 IPSC-NPC in 1 ml at a constant 100 l/min rate in case of secured blood flow through the internal carotid artery did not cause brain capillary embolism, additional cytotoxic brain tissue edemas or other complications, while inducing increase of animal survival rate and enhanced revert of the neurological deficit. IPSC-NPC accumulation in brain after intra-arterial infusion was demonstrated. Some cells interacted with the capillary endothelium and probably penetrated through the blood-brain barrier.Conclusion. Therapeutic efficacy of the systemic, intra-arterial administration of NPC in ischemic stroke has been experimentally proven. A method of secure intra-arterial infusion of cell material into the internal carotid artery middle in rats has been developed and tested.Цель. Нейральные прогениторные клетки (НПК) используются при разработке технологий клеточной терапии неврологических заболеваний. Их стереотаксическое введение в мозг крыс после имитирующей ишемический инсульт операции окклюзии средней мозговой артерии (ОСМА) приводит к облегчению симптоматики. Однако стереотаксическое введение является сложной процедурой и для лечения болезней человека может быть применено только в специализированной клинике по жизненным показаниям, что делает необходимым исследование возможности менее травматичных способов трансплантации. Цель настоящей работы – исследование возможности проведения клеточной терапии экспериментального инсульта путем внутриартериального введения НПК.Материалы и методы. НПК для трансплантации (ИПСК-НПК) получали путем двухступенчатой дифференцировки клеток стабильной линии индуцированных плюрипотентных стволовых клеток человека. Моделирование инсульта у крыс производилось методом транзиторной (90 мин) эндоваскулярной ОСМА филаментом с силиконовым наконечником. Внутриартериальная трансплантация НПК выполнялась через 24 часа после ОСМА. Магнитно-резонансная томография экспериментальных животных в динамике проводилась на МР-томографе ClinScan фирмы Bruker BioSpin с индукцией магнитного поля 7 Тл. На 1 (до введения ИПСК-НПК), 7 и 14-е сутки после трансплантации оценивались выживаемость животных и неврологический дефицит с использованием стандартной шкалы оценки тяжести инсульта mNSS для грызунов. Гистологические исследования проводили, пользуясь стандартными методами.Результаты. Внутриартериальная трансплантация ИПСК-НПК в дозе 7 × 105 НПК в 1 мл с равномерной скоростью100 мкл/мин и поддержанием кровотока по внутренней сонной артерии не вызывала эмболии капилляров мозга, появления новых зон цитотоксического отека вещества головного мозга или других осложнений и приводила к достоверному повышению выживаемости животных и более быстрому восстановлению неврологического статуса. Продемонстрировано накопление ИПСК-НПК в мозге после их внутриартериальной инфузии. Часть клеток взаимодействовала с эндотелием капилляров и, вероятно, способна проникать через ГЭБ.Заключение. Получено экспериментальное подтверждение терапевтической эффективности НПК при ишемическом инсульте при системной, внутриартериальной трансплантации. Отработан и протестирован метод безопасной внутриартериальной инфузии клеточного материала в бассейн внутренней сонной артерии у крыс

    Fungal Planet description sheets: 1284-1382

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii fromagrassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis oncalcareoussoil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceousdebris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica) , Inocybe corsica onwetground. France (French Guiana) , Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. [...]P.R. Johnston thanks J. Sullivan (Lincoln University) for the habitat image of Kowai Bush, Duckchul Park (Manaaki Whenua – Landcare Research) for the DNA sequencing, and the New Zealand Department of Conservation for permission to collect the specimens; this research was supported through the Manaaki Whenua – Landcare Research Biota Portfolio with funding from the Science and Innovation Group of the New Zealand Ministry of Business, Innovation and Employment. V. Hubka was supported by the Czech Ministry of Health (grant number NU21-05-00681), and is grateful for the support from the Japan Society for the Promotion of Science – grant-in-aid for JSPS research fellow (grant no. 20F20772). K. Glässnerová was supported by the Charles University Grant Agency (grant No. GAUK 140520). J. Trovão and colleagues were financed by FEDERFundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operational Programme for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-PTDC/ EPH-PAT/3345/2014. This work was carried out at the R&D Unit Centre for Functional Ecology – Science for People and the Planet (CFE), with reference UIDB/04004/2020, financed by FCT/MCTES through national funds (PIDDAC). J. Trovão was also supported by POCH – Programa Operacional Capital Humano (co-funding by the European Social Fund and national funding by MCTES), through a ‘FCT – Fundação para a Ciência e Tecnologia’ PhD research grant (SFRH/BD/132523/2017). D. Haelewaters acknowledges support from the Research Foundation – Flanders (Junior Postdoctoral Fellowship 1206620N). M. Loizides and colleagues are grateful to Y. Cherniavsky for contributing collections AB A12-058-1 and AB A12- 058-2, and Á. Kovács and B. Kiss for their help with molecular studies of these specimens. C. Zmuda is thanked for assisting with the collection of ladybird specimens infected with Hesperomyces parexochomi. A.V. Kachalkin and colleagues were supported by the Russian Science Foundation (grant No. 19-74-10002). The study of A.M. Glushakova was carried out as part of the Scientific Project of the State Order of the Government of Russian Federation to Lomonosov Moscow State University No. 121040800174-6. S. Nanu acknowledges the Kerala State Council for Science, Technology and Environment (KSCSTE) for granting a research fellowship and is grateful to the Chief Conservator of Forests and Wildlife for giving permission to collect fungal samples. A. Bañares and colleagues thank L. Monje and A. Pueblas of the Department of Drawing and Scientific Photography at the University of Alcalá for their help in the digital preparation of the photographs, and J. Rejos, curator of the AH herbarium for his assistance with the specimens examined in the present study. The research of V. Antonín received institutional support for long-term conceptual development of research institutions provided by the Ministry of Culture (Moravian Museum, ref. MK000094862). The studies of E.F. Malysheva, V.F. Malysheva, O.V. Morozova, and S.V. Volobuev were carried out within the framework of a research project of the Komarov Botanical Institute RAS, St Petersburg, Russia (АААА-А18-118022090078-2) using equipment of its Core Facility Centre ‘Cell and Molecular Technologies in Plant Science’.The study of A.V. Alexandrova was carried out as part of the Scientific Project of the State Order of the Government of Russian Federation to Lomonosov Moscow State University No. 121032300081-7. The Kits van Waveren Foundation (Rijksherbariumfonds Dr E. Kits van Waveren, Leiden, Netherlands) contributed substantially to the costs of sequencing and travelling expenses for M.E. Noordeloos. The work of B. Dima was partly supported by the ÚNKP- 20-4 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund. The work of L. Nagy was supported by the ‘Momentum’ program of the Hungarian Academy of Sciences (contract No. LP2019- 13/2019 to L.G.N.). G.A. Kochkina and colleagues acknowledge N. Demidov for the background photograph, and N. Suzina for the SEM photomicrograph. The research of C.M. Visagie and W.J. Nel was supported by the National Research Foundation grant no 118924 and SFH170610239162. C. Gil-Durán acknowledges Agencia Nacional de Investigación y Desarrollo, Ministerio de Ciencia, Tecnología, Conocimiento e Innovación, Gobierno de Chile, for grant ANID – Fondecyt de Postdoctorado 2021 – N° 3210135. R. Chávez and G. Levicán thank DICYT-USACH and acknowledges the grants INACH RG_03-14 and INACH RT_31-16 from the Chilean Antarctic Institute, respectively. S. Tiwari and A. Baghela would like to acknowledge R. Avchar and K. Balasubramanian from the Agharkar Research Institute, Pune, Maharashtra for helping with the termite collection. S. Tiwari is also thankful to the University Grants Commission, Delhi (India) for a junior research fellowship (827/(CSIR-UGC NET DEC.2017)). R. Lebeuf and I. Saar thank D. and H. Spencer for collecting and photographing the holotype of C. bondii, and R. Smith for photographing the habitat. A. Voitk is thanked for helping with the colour plate and review of the manuscript, and the Foray Newfoundland and Labrador for providing the paratype material. I. Saar was supported by the Estonian Research Council (grant PRG1170) and the European Regional Development Fund (Centre of Excellence EcolChange). M.P.S. Câmara acknowledges the ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq’ for the research productivity fellowship, and financial support (Universal number 408724/2018-8). W.A.S. Vieira acknowledges the ‘Coordenação de Aperfeiçoamento Pessoal de Ensino Superior – CAPES’ and the ‘Programa Nacional de Pós-Doutorado/CAPES – PNPD/CAPES’ for the postdoctoral fellowship. A.G.G. Amaral acknowledges CNPq, and A.F. Lima and I.G. Duarte acknowledge CAPES for the doctorate fellowships. F. Esteve-Raventós and colleagues were financially supported by FEDER/ Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación (Spain)/ Project CGL2017-86540-P. The authors would like to thank L. Hugot and N. Suberbielle (Conservatoire Botanique National de Corse, Office de l’Environnement de la Corse, Corti) for their help. The research of E. Larsson is supported by The Swedish Taxonomy Initiative, SLU Artdatabanken, Uppsala. Financial support was provided to R.J. Ferreira by the National Council for Scientific and Technological Development (CNPq), and to I.G. Baseia, P.S.M. Lúcio and M.P. Martín by the National Council for Scientific and Technological Development (CNPq) under CNPq-Universal 2016 (409960/2016-0) and CNPq-visiting researcher (407474/2013-7). J. Cabero and colleagues wish to acknowledge A. Rodríguez for his help to describe Genea zamorana, as well as H. Hernández for sharing information about the vegetation of the type locality. S. McMullan-Fisher and colleagues acknowledge K. Syme (assistance with illustrations), J. Kellermann (translations), M. Barrett (collection, images and sequences), T. Lohmeyer (collection and images) and N. Karunajeewa (for prompt accessioning). This research was supported through funding from Australian Biological Resources Study grant (TTC217-06) to the Royal Botanic Gardens Victoria. The research of M. Spetik and co-authors was supported by project No. CZ.02.1.01/0.0/0.0 /16_017/0002334. N. Wangsawat and colleagues were partially supported by NRCT and the Royal Golden Jubilee Ph.D. programme, grant number PHD/0218/2559. They are thankful to M. Kamsook for the photograph of the Phu Khiao Wildlife Sanctuary and P. Thamvithayakorn for phylogenetic illustrations. The study by N.T. Tran and colleagues was funded by Hort Innovation (Grant TU19000). They also thank the turf growers who supported their surveys and specimen collection. N. Matočec, I. Kušan, A. Pošta, Z. Tkalčec and A. Mešić thank the Croatian Science Foundation for their financial support under the project grant HRZZ-IP-2018-01-1736 (ForFungiDNA). A. Pošta thanks the Croatian Science Foundation for their support under the grant HRZZ-2018-09-7081. A. Morte is grateful to Fundación Séneca – Agencia de Ciencia y Tecnología de la Región de Murcia (20866/ PI/18) for financial support. The research of G. Akhmetova, G.M. Kovács, B. Dima and D.G. Knapp was supported by the National Research, Development and Innovation Office, Hungary (NKFIH KH-130401 and K-139026), the ELTE Thematic Excellence Program 2020 supported by the National Research, Development and Innovation Office (TKP2020-IKA-05) and the Stipendium Hungaricum Programme. The support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the Bolyai+ New National Excellence Program of the Ministry for Innovation and Technology to D.G. Knapp is highly appreciated. F.E. Guard and colleagues are grateful to the traditional owners, the Jirrbal and Warungu people, as well as L. and P. Hales, Reserve Managers, of the Yourka Bush Heritage Reserve. Their generosity, guidance, and the opportunity to explore the Bush Heritage Reserve on the Einasleigh Uplands in far north Queensland is greatly appreciated. The National Science Foundation (USA) provided funds (DBI#1828479) to the New York Botanical Garden for a scanning electron microscope used for imaging the spores. V. Papp was supported by the ÚNKP-21-5 New National Excellence Program of the Ministry for Innovation and Technology from the National Research, Development and Innovation Fund of Hungary. A.N. Miller thanks the WM Keck Center at the University of Illinois Urbana – Champaign for sequencing Lasiosphaeria deviata. J. Pawłowska acknowledges support form National Science Centre, Poland (grant Opus 13 no 2017/25/B/NZ8/00473). The research of T.S. Bulgakov was carried out as part of the State Research Task of the Subtropical Scientific Centre of the Russian Academy of Sciences (Theme No. 0492-2021- 0007). K. Bensch (Westerdijk Fungal Biodiversity Institute, Utrecht) is thanked for correcting the spelling of various Latin epithets.Peer reviewe

    PANDA Phase One - PANDA collaboration

    Get PDF
    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or P¯ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper

    ASSESSMENT OF THE INFLUENCE OF THE STRUCTURE OF HUMAN AND PHYSICAL CAPITALS ON COMPETITIVENESS AND QUALITY OF ECONOMIC GROWTH OF THE RUSSIAN REGIONS WITH RESOURCE ECONOMY UNDER CONDITIONS OF THE GLOBAL TRANSITION TO KNOWLEDGE ECONOMY

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.Assessment of the influence of fundamental factors of the knowledge economy development that have a specific refraction at the subregional level and assessment of the impact of the existing structure of human and physical capital in the resource regions of Russia on the scale of economic growth in the context of transition to the postindustrial information society and knowledge economy are carried out in the research paper. Intensive industrial development, primarily based on the increase of the scope of natural resources consumption, placed physical capital above the human one. As a result, human capital has long been regarded as one of the quantitative factors of production, along with the inanimate forms of physical capital. At present, the impact of human abilities and knowledge on economic development both within the national economy and within the framework of the national subregions’ development is growing rapidly. In the context of the knowledge economy, national or regional human capital is considered as a part of the region’s innovative labor resources. The key idea of the research paper lies in the fact that the approach to assessing the window of opportunities for the regions with resource economy to retain competitiveness and to ensure economic growth primarily through the development of human capital under the conditions of the global transformational transition to the knowledge economy is considered. To ensure the comparability of human and physical capital measurement, their cost estimation is applied. In this study, the macroeconomic assessment of the value of human capital in the region is based on the discount approach to calculating the value of human capital, taking into account the given rate of return on national wealth

    THE MODELS OF RESOURCE DEVELOPMENT OF THE ARCTIC TERRITORIES OF SIBERIA: THE CASE OF THE KRASNOYARSK KRAI

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.Due to the existing disproportions in the current ecological and economic condition of the territories within the Arctic zone, high supply of natural resources in the continental and off-shore Arctic areas, ecological fragility of Arctic ecosystems, as well as the need to respect the rights of indigenous peoples, it is necessary to implement differentiated approach when selecting scenarios for strategic development and management. This study examines the economic and mathematical models for the development of the Arctic zone regions illustrated by the example of the northern territories of the Krasnoyarsk Krai within the framework of the concept of “green economy”, ensuring sustainable development of social, economic and ecological systems, as well as reducing the risks posed by the global climate change issues, in such a way taking into account the decoupling effect that gives an opportunity to coordinate well-being growth rates, resource consumption and environmental impact. Panel data analysis on the northern territories of the Krasnoyarsk Krai that combines the possibilities of both time series and spatial observations analysis and takes into account the individual heterogeneity of the observation units and the opportunity to study the dynamics of changes in the individual characteristics of the aggregate units, construct and test more complex behavioral models and avoid the shift associated with the data aggregation is selected as the research methodology. The model constructed in the course of the research was tested on the northern territories of the Krasnoyarsk Krai and demonstrated the presence of the decoupling effect. The results obtained in the course the research can be used to understand the responsibility of regional and federal authorities for the consequences of irrational nature management in vulnerable Arctic territories
    corecore