7,152 research outputs found

    From a kinetic equation to a diffusion under an anomalous scaling

    Get PDF
    A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process (K(t), i(t), Y(t)), where (K(t), i(t)) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance, and Y(t) is an additive functional of K(t). We prove that under an anomalous rescaling Y converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to a diffusion equation

    Asymptotics of the solutions of the stochastic lattice wave equation

    Full text link
    We consider the long time limit theorems for the solutions of a discrete wave equation with a weak stochastic forcing. The multiplicative noise conserves the energy and the momentum. We obtain a time-inhomogeneous Ornstein-Uhlenbeck equation for the limit wave function that holds both for square integrable and statistically homogeneous initial data. The limit is understood in the point-wise sense in the former case, and in the weak sense in the latter. On the other hand, the weak limit for square integrable initial data is deterministic

    Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension

    Get PDF
    We consider the long time, large scale behavior of the Wigner transform W_\eps(t,x,k) of the wave function corresponding to a discrete wave equation on a 1-d integer lattice, with a weak multiplicative noise. This model has been introduced in Basile, Bernardin, and Olla to describe a system of interacting linear oscillators with a weak noise that conserves locally the kinetic energy and the momentum. The kinetic limit for the Wigner transform has been shown in Basile, Olla, and Spohn. In the present paper we prove that in the unpinned case there exists γ0>0\gamma_0>0 such that for any γ(0,γ0]\gamma\in(0,\gamma_0] the weak limit of W_\eps(t/\eps^{3/2\gamma},x/\eps^{\gamma},k), as \eps\ll1, satisfies a one dimensional fractional heat equation tW(t,x)=c^(x2)3/4W(t,x)\partial_t W(t,x)=-\hat c(-\partial_x^2)^{3/4}W(t,x) with c^>0\hat c>0. In the pinned case an analogous result can be claimed for W_\eps(t/\eps^{2\gamma},x/\eps^{\gamma},k) but the limit satisfies then the usual heat equation

    Thermal conductivity in harmonic lattices with random collisions

    Get PDF
    We review recent rigorous mathematical results about the macroscopic behaviour of harmonic chains with the dynamics perturbed by a random exchange of velocities between nearest neighbor particles. The random exchange models the effects of nonlinearities of anharmonic chains and the resulting dynamics have similar macroscopic behaviour. In particular there is a superdiffusion of energy for unpinned acoustic chains. The corresponding evolution of the temperature profile is governed by a fractional heat equation. In non-acoustic chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Finite size scaling of meson propagators with isospin chemical potential

    Get PDF
    We determine the volume and mass dependence of scalar and pseudoscalar two-point functions in N_f-flavour QCD, in the presence of an isospin chemical potential and at fixed gauge-field topology. We obtain these results at second order in the \epsilon-expansion of Chiral Perturbation Theory and evaluate all relevant zero-mode group integrals analytically. The virtue of working with a non-vanishing chemical potential is that it provides the correlation functions with a dependence on both the chiral condensate, \Sigma, and the pion decay constant, F, already at leading order. Our results may therefore be useful for improving the determination of these constants from lattice QCD calculations. As a side product, we rectify an earlier calculation of the O(\epsilon^2) finite-volume correction to the decay constant appearing in the partition function. We also compute a generalised partition function which is useful for evaluating U(N_f) group integrals

    Thermal conductivity of the Toda lattice with conservative noise

    Full text link
    We study the thermal conductivity of the one dimensional Toda lattice perturbed by a stochastic dynamics preserving energy and momentum. The strength of the stochastic noise is controlled by a parameter γ\gamma. We show that heat transport is anomalous, and that the thermal conductivity diverges with the length nn of the chain according to κ(n)nα\kappa(n) \sim n^\alpha, with 0<α1/20 < \alpha \leq 1/2. In particular, the ballistic heat conduction of the unperturbed Toda chain is destroyed. Besides, the exponent α\alpha of the divergence depends on γ\gamma

    Quality and Effectiveness of Pre-Kindergarten Programs in Georgia: Parental Perspectives

    Get PDF
    A survey of parents whose children participate in Georgia's free prekindergarten, which assesses parents' perceptions of quality and effectiveness

    Chiral symmetry restoration, eigenvalue density of Dirac operator and axial U(1) anomaly at finite temperature

    Get PDF
    We reconsider constraints on the eigenvalue density of the Dirac operator in the chiral symmetric phase of 2 flavor QCD at finite temperature. To avoid possible ultra-violet(UV) divergences, we work on a lattice, employing the overlap Dirac operator, which ensures the exact "chiral" symmetry at finite lattice spacings. Studying multi-point correlation functions in various channels and taking their thermodynamical limit (and then taking the chiral limit), we obtain stronger constraints than those found in the previous studies: both the eigenvalue density at the origin and its first and second derivatives vanish in the chiral limit of 2 flavor QCD. In addition we show that the axial U(1) anomaly becomes invisible in susceptibilities of scalar and pseudo scalar mesons, suggesting that the 2nd order chiral phase transition with the O(4) scaling is not realized in 2 flavor QCD. Possible lattice artifacts when non-chiral lattice Dirac operator is employed are briefly discussed.Comment: 39 pages, 1 figure(2 eps files), a version published in PR

    On the controllability of bimodal piecewise linear systems

    Get PDF
    This paper studies controllability of bimodal systems that consist of two linear dynamics on each side of a given hyperplane. We show that the controllability properties of these systems can be inferred from those of linear systems for which the inputs are constrained in a certain way. Inspired by the earlier work on constrained controllability of linear systems, we derive necessary and sufficient conditions for a bimodal piecewise linear system to be controllable.Natl Sci Fdn; Univ Penn, Sch Engn & Appl Sci
    corecore