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Abstract. This paper studies controllability of bimodal systems that
consist of two linear dynamics on each side of a given hyperplane. We
show that the controllability properties of these systems can be inferred
from those of linear systems for which the inputs are constrained in a
certain way. Inspired by the earlier work on constrained controllability of
linear systems, we derive necessary and sufficient conditions for a bimodal
piecewise linear system to be controllable.

1 Introduction

One of the most basic concepts in control theory is the notion of controllability.
This concept has been studied extensively for linear systems, nonlinear systems,
infinite-dimensional systems and so on. The notion of controllability plays a
role for instance in stability theory and in realization theory; more recently it
has also been used in safety studies where it is important to know whether
certain regions of the state space are reachable or not under the influence of an
external input. While the algebraic characterization of controllability of finite-
dimensional linear systems is among the classical results of systems theory, global
controllability results for nonlinear systems have been hard to come by. In this
paper we consider global controllability for two related classes of piecewise linear
systems, and obtain a complete characterization.

One class of switched linear systems that we consider consists of controlled
systems whose dynamics depends on the sign of one of the state variables. Such
systems have two modes, and the switching between these modes is determined
by the zero crossings of the designated state variable or more generally of some
linear function of the state variables. The evolution of the state variables is
influenced not only by the internal dynamics, but also by an external input
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which indirectly affects the switching behavior of the system. In the second class
of switched systems that we study here, it is the input vector that may switch
between two possible values, and the switching is determined directly by the sign
of the input variable itself. Models of this type may be used to describe situations
where “pushing” and “pulling” have different effects (besides a sign change).
It turns out that the controllability problems for these two classes are closely
related; we establish this relation by means of a special state representation akin
to the strict feedback form that is used in backstepping control design.

The controllability problems that we consider are specified more precisely in
the next section, in which we also present the main results of the paper along
with some discussion of how these results relate to the existing literature. Most
of the proofs are in the Appendix which follows after the conclusions section.

The following notational conventions will be in force throughout the paper.
The symbol R denotes the set of real numbers, Rn n-tuples of real numbers,
and Rn×m n × m real matrices. The set of complex numbers is denoted by C,
natural numbers by N. The set of locally integrable functions is denoted by Lloc

1 ,
absolutely continuous functions by AC, and infinitely differentiable functions by
C∞. For a matrix A ∈ Rn×m, AT stands for its transpose, kerA for its kernel,
i.e. the set {x ∈ Rm | Ax = 0}, im A for its image, i.e. the set {y ∈ Rn | y =
Ax for some x ∈ Rm}, exp(A) for its exponential. If B has also m columns then
col(A,B) denotes the matrix obtained by stacking A over B. If B ∈ Rp×q then
blockdiag(A,B) denotes the block diagonal (n + p)× (m + q) matrix for which
the left upper n×m block is A, the right lower p× q block is B, and the rest of
the entries are zero.

2 Main results

Consider the bimodal piecewise linear system given by

ẋ(t) =

{
A1x(t) + bu(t) if cT x(t) 6 0,

A2x(t) + bu(t) if cT x(t) > 0
(1)

where A1, A2 ∈ Rn×n and b, c ∈ Rn×1. We assume that the dynamics is contin-
uous along the hyperplane {x | cT x = 0}, i.e.

cT x = 0 ⇒ A1x = A2x. (2)

As the right hand side of (1) is Lipschitz continuous in the x variable, one can
show that for each initial state x0 ∈ Rn and input u ∈ Lloc

1 there exists a unique
absolutely continuous function x satisfying (1) almost everywhere.

The system (1) is a special case of a family of hybrid systems that are called
linear complementarity systems (LCSs). Lying in the intersection of the math-
ematical programming and systems theory, LCSs find applications in various
engineering fields as well as economical sciences. We refer to [3] and the refer-
ences therein for an account of the previous work on LCSs. An LCS is a system



of the form

ẋ(t) = Ax(t) + Ez(t) + Bu(t) (3a)
w(t) = Cx(t) + Dz(t) (3b)
0 6 z(t) ⊥ w(t) > 0. (3c)

Here A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×n, D ∈ Rk×k, E ∈ Rn×k, the inequali-
ties are componentwise, and z ⊥ w means that zT w = 0. The relation (3c) is
known as the complementarity condition and the pair (z, w) as complementarity
variables. Note that the complementarity conditions require, at least, one of the
complementarity variables to be zero at a given time instant.

To see that (1) is a type of LCS, note that the condition (2) implies that the
difference A2 − A1 is, at most, of rank one and its kernel contains the kernel of
cT . Therefore, one can find a vector e ∈ Rn×1 such that A2−A1 = ecT . Consider
the LCS

ẋ(t) = A2x(t) + ez(t) + bu(t) (4a)

w(t) = cT x(t) + z(t) (4b)
0 6 z(t) ⊥ w(t) > 0 (4c)

where there is only one pair of complementarity variables. As a consequence,
the overall system has two ‘modes’ (i.e. it is bimodal). Indeed, if the variable z
is zero on an interval of time, then cT x is nonnegative on that interval and the
system follows the dynamics of ẋ = A2x + bu. Alternatively, if the variable w
is zero on an interval then cT x is nonpositive on that interval and the system
follows the dynamics of ẋ = (A2 − ecT )x + bu. Note that A2 − ecT = A1 by the
construction of the vector e and hence (4) is equivalent to (1) in the obvious
sense.

2.1 Controllability of linear systems

From a control theory point of view, one of the very immediate issues is the
controllability of the system at hand. More precisely, the question is whether an
arbitrary initial state x0 can be steered to an arbitrary final state xf . Following
the classical literature, we say that the system (1) is completely controllable if for
any pair of states (x0, xf ) there exists an input u ∈ Lloc

1 such that the solution
of (1) with x(0) = x0 passes through xf , i.e. x(τ) = xf for some τ > 0.

Before studying the controllability of (1), we want to discuss some of the
available results on the controllability of linear systems. Note that the system
(1) is nothing but a single-input linear system when A1 = A2 = A. In this case,
(1) can be written as

ẋ = Ax + bu. (5)

Ever since Kalman’s seminal work [5] introduced the notion of controllability
(and also observability) in the state space framework, it has been one of the
central notions in systems and control theory. Tests for controllability were given



by Kalman himself and many others (see e.g. [4] for historical details). The
following theorem summarizes the classical results on the controllability of linear
systems for the single input case.

Theorem 1. The following statements are equivalent.

1. The system (5) is completely controllable.
2. The matrix

[
b Ab · · · An−1b

]
is of rank n.

3. For any eigenpair (λ, z) of AT (i.e., zT A = λzT ), zT b 6= 0.
4. The rank of the matrix

[
sI −A b

]
is equal to n for all s ∈ C.

In practice, one may encounter controllability problems for which the input
may only take values from a set Ω ⊂ R. A typical example of such constrained
controllability problems would be a (linear) system that may admit only positive
controls. Study of constrained controllability goes back to the sixties (see for
instance [6]). Early results consider only restraint sets Ω which contain the origin
in their interior. The following theorem can be proven with the help of [6, Thm.
8, p. 92].

Theorem 2. Consider the system (5) for which the input function is constrained
as u(t) ∈ Ω where Ω is a compact set which contains zero in its interior. Then,
(5) is completely controllable if and only if (A, b) is controllable and all eigen-
values of A lie on the imaginary axis.

When only positive controls are allowed, the set Ω does not contain the origin in
its interior. Saperstone and Yorke [7] were the first to consider such constraint
sets. In particular, they considered the case Ω = [0, 1]. More general restraint
sets were studied by Brammer [2]. All these results were obtained for the multi-
input case. For the single-input case, Brammer’s contribution can be stated as
follows.

Theorem 3. Consider the system (5) for which the input function is constrained
as u(t) ∈ Ω where the restraint set Ω has the following properties.

i. 0 ∈ Ω,
ii. convex hull of Ω has nonempty interior.

Then, (5) is completely controllable if and only if the following conditions hold.

1. The pair (A, b) is controllable.
2. There is no real eigenvector w of AT satisfying wT bv 6 0 for all v ∈ Ω.

As a consequence of the above theorem, necessary and sufficient conditions for
the complete controllability of the system (5) with a nonnegative input are i)
the pair (A, b) is controllable, and ii) A has no real eigenvalue.

The main goal of the present paper is to investigate controllability properties
of a piecewise linear system of the form (1). Although none of the above results
are directly applicable, we will see that they will play a crucial role in studying
controllability of piecewise linear systems.



2.2 Controllability of bimodal piecewise linear systems

For the moment, we focus on systems of the form

ζ̇(t) = Kζ(t) +

{
Nη(t) if η(t) 6 0
Pη(t) if η(t) > 0,

(6)

where K ∈ Rk×k, N ∈ Rk, P ∈ Rk. As we shall see later, controllability of (6)
is closely related to that of (1).

For (6), unlike the standard controllability problems, we will consider abso-
lutely continuous inputs η. The following theorem presents necessary and suffi-
cient conditions for the controllability of (6).

Theorem 4. The following statements are equivalent.

1. For each ζ0, ζf ∈ Rk and η0, ηf ∈ R, there exist a real number T > 0 and a
solution (ζ, η) ∈ ACk+1 of (6) such that

ζ(0) = ζ0, ζ(T ) = ζf (7)
η(0) = η0, η(T ) = ηf . (8)

2. There exists no nonzero w such that

wT exp(Kt)N 6 0 and wT exp(Kt)P > 0 (9)

for all t > 0.
3. (K,

[
N P

]
) is controllable and KT z = λz, λ ∈ R, z 6= 0 ⇒ (zT N)(zT P ) > 0.

Remark 1. When N = P , the system (6) is nothing but a linear system given
by ζ̇ = Kζ + Pη. As N = P , the condition (zT N)(zT P ) > 0 is satisfied for any
nonzero vector z. Hence, the third condition is equivalent to saying that (K, P )
is a controllable pair.

Remark 2. Another special case that is captured by our theorem is the con-
trollability of linear systems with positive controls. Indeed, if we take N = 0
controllability properties of the system (6) must be equivalent to those of the
system ζ̇ = Kζ + Pη where η is restricted to be pointwise nonnegative. In this
case, (zT N)(zT P ) is always zero. Therefore, the third condition of the above
theorem is equivalent to saying that (K, P ) is a controllable pair and K has no
real eigenvalues. In other words, Theorem 3 is a special case of Theorem 4 when
Ω is the set of nonnegative real numbers.

Now, we turn to the system (1). Define the transfer functions Gi(s) = cT (sI −
Ai)−1b for i = 1, 2. It follows from (2) that G1(s) ≡ 0 if and only if G2(s) ≡ 0.
If Gi(s) ≡ 0 then the system (1) is not completely controllable. In the rest of
the paper, we assume that Gi(s) 6≡ 0 for i = 1, 2. Let V?

i be the largest (Ai, b)-
controlled invariant subspace that is contained in ker cT . In other words, V?

i is
the largest of the subspaces Vi such that (A− bfT )Vi ⊆ Vi for some f ∈ Rn and



Vi ⊆ ker cT . Also let S?
i be the smallest (cT , Ai)-conditioned invariant subspace

that contains im b. Equivalently, S?
i is the smallest of the subspaces Si such that

(A − gcT )Si ⊆ Si for some g ∈ Rn and im b ⊆ Si. We refer to [1] for a more
detailed discussion on the controlled and conditioned invariant subspaces. Since
Gi(s) 6≡ 0, it is invertible. As a consequence, a well-known result of the geometric
control theory states that V?

i ⊕ S?
i = Rn. By using (2), one can show that

1. V?
1 = V?

2 =: V?,
2. A1 |V?

1
= A2 |V?

2
,

3. S?
1 = S?

2 =: S?.

This means that we can rewrite (1) as

ẋ =



[
H g1c

T
2

b2f
T J1

]
x +

[
0
b2

]
u if cT

2 x2 6 0

[
H g2c

T
2

b2f
T J2

]
x +

[
0
b2

]
u if cT

2 x2 > 0

(10)

by choosing a basis for Rn which is adopted to V? and S?. Here, b2 ∈ Rn2 ,
c2 ∈ Rn2 , f ∈ Rn1 , gi ∈ Rn1 , H ∈ Rn1×n1 , and Ji ∈ Rn2×n2 where n1 = dim(V?)
and n2 = dim(S?). Let e = col(e1, e2) where e1 ∈ Rn1 and e2 ∈ Rn2 in this new
coordinates. Note that

e1 = g2 − g1. (11)

Furthermore, the transfer functions cT
2 (sI −Ji)−1b2 do not have any finite zeros

and the pairs (Ji, b2) are controllable.

At this point, we claim that the system (10) is completely controllable if and
only if for each x0 and xf there exist a real number T > 0 and x = col(x1, x2) ∈
ACn such that

ẋ1 = Hx1 +

{
g1c

T
2 x2 if cT

2 x2 6 0
g2c

T
2 x2 if cT

2 x2 > 0
(12)

with x(0) = x0 and x(T ) = xf . The ‘only if’ part is evident. For the ‘if’ part,
let x0 and xf be given arbitrary states. Let T and x = col(x1, x2) be such that
(12) is satisfied with x(0) = x0 and x(T ) = xf . Note that cT

2 (sI − Ji)−1b2 have
polynomial inverses, say Li(s), as they both have no finite zeros. Now, it can be
verified that the input

u = −fT x1 +

{
L1( d

dt )c
T
2 x2 if cT

2 x2 6 0
L2( d

dt )c
T
2 x2 if cT

2 x2 > 0

steers the initial state x0 of the system (10) to the final state xf in T units of time.

Hence, in view of Theorem 4, we proved that the system (10) (equivalently
(1)) is completely controllable if and only if



1. (H,
[
g1 g2

]
) is controllable, and

2. The implication

HT z = λz, λ ∈ R, z 6= 0 ⇒ (zT g1)(zT g2) > 0 (13)

holds.

We claim that (H,
[
g1 g2

]
) is controllable if and only if so is (A1,

[
b e

]
). To

see this, we will use the Hautus test. Note that

rank(
[
sI −A1 b e

]
) = rank(

[
sI −H −g1c

T
2 0 e1

−b2f
T sI − J1 b2 e2

]
). (14)

After performing elementary column operations, we obtain

rank(
[
sI −A1 b e

]
) = rank(

[
sI −H −g1c

T
2 0 e1

0 sI − J1 b2 e2

]
) (15)

= rank(
[
sI −H −g1c

T
2 e1

]
) + rank(

[
sI − J1 b2 e2

]
). (16)

As the pair (J1, b2) is controllable, the last summand equals to n2. Note that
the first one is equal to rank(

[
sI −H g1 g2

]
) in view of (11). Consequently,

(H,
[
g1 g2

]
) is controllable if and only if (A1,

[
b e

]
) is controllable.

On the other hand, straightforward calculations show that (13) is equivalent
to the implication[

vT µi

] [
λI −Ai b

cT 0

]
= 0, λ ∈ R, v 6= 0, i = 1, 2 ⇒ µ1µ2 > 0. (17)

Thus, we proved the following theorem.

Theorem 5. Let e be such that A2 − A1 = ecT . The bimodal piecewise linear
system (1) is completely controllable if and only if the following conditions hold.

1. The pair (A1,
[
b e

]
) is controllable.

2. The implication[
vT µi

] [
λI −Ai b

cT 0

]
= 0, λ ∈ R, v 6= 0, i = 1, 2 ⇒ µ1µ2 > 0. (18)

holds.

3 Conclusions

We have obtained algebraic characterizations of controllability for two related
classes of bimodal piecewise linear systems. These characterizations generalize
classical results for single-mode linear systems as well as controllability results for
systems subject to positive control. An interesting problem for further research
is the characterization of controllability for similar systems with multiple inputs
or outputs whose signs determine mode changes. Such systems may have many
modes. Another question of interest would be to establish the relation between
controllability and stabilizability in the context of the classes of switching linear
systems considered here.



Appendix: Proof of Theorem 4

First we need some preparations. The following proposition will simplify the
analysis of the controllability properties of (6).

Proposition 1. The following statements are equivalent.

1. For each ζ0, ζf ∈ Rk and η0, ηf ∈ R, there exist a real number T > 0 and a
solution (ζ, η) ∈ ACk+1 of (6) such that

ζ(0) = ζ0, ζ(T ) = ζf (19)
η(0) = η0, η(T ) = ηf . (20)

2. For each ζ0, ζf ∈ Rk, there exist a real number T > 0 and a solution (ζ, η) ∈
ACk+1 of (6) such that

ζ(0) = ζ0, ζ(T ) = ζf (21)
η(0) = η(T ) = 0. (22)

3. For each ζm ∈ Rk, there exist real numbers T−, T+ > 0 and two solutions
(ζ−, η−) ∈ ACk+1 and (ζ+, η+) ∈ ACk+1 of (6) such that

ζ−(0) = ζm, ζ−(T−) = 0 ζ+(0) = 0, ζ+(T+) = ζm (23)
η−(0) = η−(T−) = 0 η+(0) = η+(T+) = 0. (24)

Proof. 1⇒2: Evident.

2⇒3: Evident.

3⇒1: Suppose that the statement 3 holds. We claim that for any ζ0, ζf ∈ Rk

and η0, ηf ∈ R, there exist a real number T > 0 and a solution (ζ, η) ∈ ACk+1

of (6) such that

ζ(0) = ζ0, ζ(T ) = ζf (25a)
η(0) = η0, η(T ) = ηf . (25b)

In what follows we construct such a solution.

i. Let ηpre be a C∞-function such that

ηpre(0) = η0 and ηpre(1) = 0.

Let (ζpre, ηpre) be the solution of (6) with ζpre(0) = ζ0. Define ζ ′0 := ζpre(1).
ii. Let ηpost be a C∞-function such that

ηpost(0) = 0 and ηpost(1) = ηf .

Let (ζpost, ηpost) be the solution of (6) with ζpost(1) = ζf . Define ζ ′f :=
ζpost(0).



iii. The statement 3 guarantees the existence of the solutions (ζ−, η−) ∈ ACk+1

and (ζ+, η+) ∈ ACk+1 of (6) such that

ζ−(0) = ζ ′0, ζ−(T−) = 0 ζ+(0) = 0, ζ+(T+) = ζ ′f (26)

η−(0) = η−(T−) = 0 η+(0) = η+(T+) = 0. (27)

Consider a C∞-function η satisfying

η(t) =


ηpre(t) if 0 6 t 6 1,

η−(t− 1) if 1 6 t 6 1 + T−,

η+(t− 1− T−) if 1 + T− 6 t 6 1 + T− + T+,

ηpost(t− 1− T− − T+) if 1 + T− + T+ 6 t 6 2 + T− + T+.

Let ζ be the concatenation of the functions ζpre, ζ−, ζ+, and ζpost in the same
manner. By construction, (ζ, η) is a solution of (6) satisfying (25).

The next lemma provides necessary and sufficient conditions for the system
(6) to be controllable from the origin.

Lemma 1. The following statements are equivalent.

1. For each ζm ∈ Rk, there exist a real number T > 0 and a solution (ζ, η) ∈
ACk+1 of (6) such that

ζ(0) = 0, ζ(T ) = ζm (28)
η(0) = η(T ) = 0. (29)

2. There exists no nonzero w such that

wT exp(Kt)N 6 0 and wT exp(Kt)P > 0 (30)

for all t > 0.

Proof. 1⇒2: Suppose that 1 holds but 2 does not. Let w be such that

wT exp(Kt)N 6 0 and wT exp(Kt)P > 0 (31)

for all t > 0. Then, for any η ∈ AC the solution of (6) with ζ(0) = 0 satisfies

wT ζ(T ) = wT

∫ T

0

exp(K(T − s))(−Nη−(s) + Pη+(s)) ds > 0. (32)

In other words, 1 fails for any ζm with wT ζm < 0. Contradiction!

2⇒1: Consider for each ∆ > 0 a nonnegative valued C∞-function η∆ with
supp(η∆) ⊆ (∆

4 , 3∆
4 ) and ∫ 3∆/4

∆/4

η∆(t) dt = 1.



It is a standard fact from distribution theory that η∆ converges to a Dirac
impulse as ∆ tends to zero. Now, consider the input

η(t) = a0η
∆(t)− a1η

∆(t−∆) +− · · · − a2q−1η
∆(t− (2q − 1)∆). (33)

where 0 6 t 6 2q∆ and all ais are nonnegative. Note that η is a C∞-function.
Obviously, η ∈ AC for T = 2q∆. Let M(∆) be defined as the integral∫ ∆

0

exp(K(∆− s))η∆(s) ds.

Note that M(∆) commutes with K and hence with exp(K·). The input given
by (33) steers the origin to the state

ζ(T ) = M(∆)
2q−1∑
i=1

exp(K(2q − 1− i)∆)Liai (34)

under the dynamics of (6). Here Li = P if i is even and Li = −N if i is odd.
Therefore, if ζm is a nonnegative linear combination of the columns of a matrix
of the form

Q(∆, q) := M(∆)
[
−N exp(K∆)P · · · exp(K(2q − 1)∆)P

]
(35)

then there exists a solution of (6) which satisfies the properties (28). Now, sup-
pose that 2 holds but 1 does not. Then, there should exist a ζm such that it
cannot be written as a nonnegative linear combination of the columns of a ma-
trix Q(∆, q) for any pair (∆, q). It follows from Farkas’ lemma that for each ∆
and q there exists w∆,q such that

wT
∆,qζm < 0 (36a)

wT
∆,qQ(∆, q) > 0. (36b)

Obviously, we can take ‖ w∆,q ‖= 1 without loss of generality. Take a sequence
of real numbers ∆i that converges to zero. Choose a positive real number T . Let
qi be the smallest integer such that T 6 2qi∆i. As w∆i,qi

is bounded, it admits
a convergent subsequence due to the well-known Bolzano-Weierstrass theorem.
Therefore, we can assume, without loss of generality, that the sequence w∆i,qi

itself is convergent. Let wT denote its limit. Note that, in view of (36b), one has

wT
∆i,qi

M(∆i) exp(K(2j)∆i)N 6 0 (37a)

wT
∆i,qi

M(∆i) exp(K(2j + 1)∆i)P > 0 (37b)

for all j = 0, 1, . . . , qi−1. Let ji be the smallest integer such that t 6 (2ji +1)∆i

for a fixed t ∈ [0, T ]. Obviously, 2ji∆i and (2ji + 1)∆i both converge to t. Note



that M(∆) converges to the identity matrix as ∆ tends to zero. By taking the
limit of (37), one has

wT
T exp(Kt)N 6 0 (38a)

wT
T exp(Kt)P > 0 (38b)

for all t ∈ [0, T ] since M(∆) converges to the identity matrix as ∆ tends to zero.
Note that ‖ wT ‖= 1. The Bolzano-Weierstrass theorem asserts that there exists
a convergent subsequence within the set {wT | T ∈ N}, say wTi . Let w denote
the limit of wTi as Ti tends to infinity. We claim that

wT exp(Kt)N 6 0 (39a)

wT exp(Kt)P > 0 (39b)

for all t > 0. To show this, suppose that wT exp(Kt′)N > 0 for some t′. Then,
for some sufficiently large T ′, one has wT

T ′ exp(Kt′)N > 0 and t′ < T ′. However,
this cannot happen due to (38a). In a similar fashion, one can conclude that
(39b) holds. As w 6= 0, (39) contradicts the statement 2.

The condition (30) is existential in nature and as such it cannot be verified
easily. Our next aim is to provide an alternative characterization of (30). First,
we focus on the case for which K has no real eigenvalues. The following lemma
can be found in [2, proof of Theorem 1.4].

Lemma 2. Let K ∈ Rk×k and R ∈ Rn×m. If K has no real eigenvalues and
(K, R) is controllable then there exists no nonzero w such that wT exp(Kt)R 6 0
for all t > 0.

When (K, R) is not controllable, a similar result can be stated as follows.

Lemma 3. Let K ∈ Rk×k and R ∈ Rn×m. If K has no real eigenvalues then
the implication

wT exp(Kt)R 6 0 for all t > 0 ⇒ wT exp(Kt)R = 0 for all t = 0 (40)

holds.

Proof. With no loss of generality, one may assume that the pair (K, R) is in the
following canonical form

K =
[
K11 K12

0 K22

]
, R =

[
R1

0

]
(41)

where (K11, R1) is controllable. Note that

exp(Kt) =
[
exp(K11t) ∗

0 exp(K22)

]
. (42)

Hence, wT exp(Kt)R = wT
1 exp(K11t)R1 for any w with a partition w = col(w1, w2)

that conforms to the partition (41). Let w be such that wT exp(Kt)R 6 0



for all t > 0. This would mean that wT
1 exp(K11t)R1 6 0 for all t > 0. As

(K11, R1) is controllable, however, Lemma 2 implies that w1 = 0. Consequently,
wT exp(Kt)R = 0 for all t > 0.

At the other extreme, the case for which K has only real eigenvalues stands. The
following lemma presents an alternative characterization of the condition (30)
for this case.

Lemma 4. Let K ∈ Rk×k, N ∈ Rk, and P ∈ Rk. Suppose that K has only real
eigenvalues. Then, the following conditions are equivalent.

1. There exists no nonzero w such that wT exp(Kt)N 6 0 and wT exp(Kt)P >
0 for all t > 0.

2. Any eigenvector z of KT satisfies (zT N)(zT P ) > 0.

Proof. 1⇒2: Suppose that 1 holds but 2 does not. Then, for an eigenvector of
z of KT one has zT N 6 0 and zT P > 0. Obviously, zT exp(Kt)N 6 0 and
zT exp(Kt)P > 0 for all t > 0. Contradiction!

2⇒1: Suppose that 2 holds but 1 does not. Let w 6= 0 be such that

wT exp(Kt)N 6 0 and wT exp(Kt)P > 0 for all t > 0.

It follows from [2, Lemma 2.4] that

wT exp(Kt) =
q∑

i=1

tji exp(λit)[zT
i + fT

i (t)] (43)

where

i. λ1 > λ2 > · · · > λq are the q distinct eigenvalues of the matrix K,
ii. KT zi = λizi,
iii. if zi = 0 then fT

i (t) ≡ 0,
iv. jis are nonnegative integers, and
v. the functions fi vanish as t tends to infinity.

Let q′ be the smallest integer such that zq′ 6= 0. Note that the sign of wT exp(Kt)N
for all sufficiently large t is the same as the sign of zT

q′N . Similarly, the sign of
wT exp(Kt)P for all sufficiently large t is the same as the sign of zT

q′P . Therefore,
(wT exp(Kt)N)(wT exp(Kt)P ) > 0 for all sufficiently large t. Contradiction!

The above proof has the following side result that will be used later.

Corollary 1. Let K ∈ Rk×k, N ∈ Rk, and P ∈ Rk. Suppose that K has only
real eigenvalues and for any eigenvector z of KT there holds that (zT N)(zT P ) >
0. Then, for any vector w

(wT exp(Kt)N)(wT exp(Kt)P ) > 0 (44)

for all sufficiently large t.



Lemma 5. Let K ∈ Rk×k, N ∈ Rk, and P ∈ Rk. The following statements are
equivalent.

1. There exists no nonzero w such that wT exp(Kt)N 6 0 and wT exp(Kt)P >
0 for all t > 0.

2. The pair (K,
[
N P

]
) is controllable and (zT N)(zT P ) > 0 for any real eigen-

vector z of KT .

Proof. 1⇒2: Suppose that (K,
[
N P

]
) is not controllable. Then, the matrix[

s′I −K N P
]

is not of full row rank for some s′ ∈ C, i.e. there should exists
a nonzero complex vector v such that v∗

[
s′I −K N P

]
= 0. Let v = v1 + iv2

where v1 and v2 are real vectors, and also let s′ = σ + iω where σ and ω are real
numbers. Clearly, vT

i N = vT
i P = 0 for i = 1, 2. Note that[
vT
1

vT
2

]
K =

[
σ ω
−ω σ

] [
vT
1

vT
2

]
. (45)

This would result in [
vT
1

vT
2

]
exp(Kt) = exp(

[
σ ω
−ω σ

]
t)

[
vT
1

vT
2

]
. (46)

Therefore, we have wT exp(Kt)N = wT exp(Kt)P = 0 for any linear combina-
tion w of the vectors v1 and v2. We reach a contradiction. Consequently, the
matrix

[
sI −K N P

]
must have full row rank for all s ∈ C. Suppose, now,

that there exists a real eigenvector of KT such that (zT N)(zT P ) 6 0. Without
loss of generality, we can assume that zT N 6 0 and zT P > 0. This, however,
would mean that zT exp(Kt)N 6 0 and zT exp(Kt)P > 0 for all t > 0. Contra-
diction! Therefore, (zT N)(zT P ) must be positive for any real eigenvector of KT .

2⇒1: Suppose that 2 holds but 1 does not. Let the nonzero vector w satisfy
wT exp(Kt)N 6 0 and wT exp(Kt)P > 0 for all t > 0. We can assume that the
matrix K has the form K = blockdiag(K1,K2) (with possibly empty blocks)
where K1 has only real eigenvectors and K2 has no real eigenvectors. Clearly,
exp(Kt) = blockdiag(exp(K1t), exp(K2t)). Let the partitions N = col(N1, N2),
P = col(P1, P2), and w = col(w1, w2) conform to the above partition of K. Then,
we have

wT
1 exp(K1t)N1 + wT

2 exp(K2t)N2 6 0 (47a)

wT
1 exp(K1t)P1 + wT

2 exp(K2t)P2 > 0 (47b)

for all t > 0. It follows from Corollary 1 that wT
1 exp(K1t)N1 and wT

1 exp(K1t)P1

have the same sign for all sufficiently large t as every real eigenvector z of KT

satisfies (zT N)(zT P ) > 0. Then, in order the relations (47) to hold, either

wT
2 exp(K2t)N2 6 0 (48)

or
wT

2 exp(K2t)P2 > 0 (49)



should be satisfied for all t > t0 > 0 for some t0. Therefore, either

w̃T
2 exp(K2t)N2 6 0 (50)

or
w̃T

2 exp(K2t)P2 > 0 (51)

is satisfied for all t > 0 where w̃2 := exp(KT t0)w2. This means that either (50)
or (51) should be satisfied as equality for all t > 0 in view of Lemma 3. We claim
that in fact both are satisfied as equality. To see this, first suppose that (50)
is satisfied as equality. From (48) and (47a), we get wT

1 exp(K1t)N1 6 0 for all
t > 0. As a consequence of Corollary 1 and (47b), we get wT

2 exp(K2t)P2 > 0
for all t > 0. Due to Lemma 2 this would mean that (51) is also satisfied as
equality for all t > 0. Now, suppose that (51) is satisfied as equality. Similar
analysis as above would show that (50) should be satisfied as equality in this
case. Since both (50) and (51) are satisfied as equality, the vector w̃2 should lie in
the intersection of the uncontrollable spaces of the pairs (K2, N2) and (K2, P2).
By hypothesis, therefore, w̃2 = w2 = 0. From (47) and Lemma 4, we conclude
that w1 = 0. Hence, w = 0. Contradiction!

After all these preparations, we are in a position to prove Theorem 6. Lemma 5
proves the equivalence of the second and third statements. Note that the condi-
tions in 3 are satisfied by a triple (K, N,P ) if and only if they are satisfied by
(−K,−N,−P ). Therefore, the third statement is equivalent to the third state-
ment in Proposition 1 due to Lemma 1. This concludes the proof.
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