97 research outputs found

    Early changes in Orthopteran assemblages after grassland restoration : a comparison of space-for-time substitution versus repeated-measures monitoring

    Get PDF
    Grasslands harbour significant biodiversity and their restoration is a common intervention in biodiversity conservation. However, we know very little on how grassland restoration influences arthropod groups. Here we compared orthopteran assemblages in croplands, natural grasslands and one to four-year-old grasslands restored in a large-scale restoration on former croplands in Hortobágy National Park (E-Hungary). Sampling was done by standardized sweep-netting both in a repeated measures design and space-for-time substitution (chronosequence) design. General linear models with repeated measures from five years showed that species richness, abundance and Shannon diversity of orthopterans decreased in the year following restoration but increased afterwards. By the fourth year, species richness almost doubled and abundance increased almost ten-fold in restored grasslands compared to croplands. Multivariate analyses showed that species composition in the first two years did not progress much but by the third and fourth year there was partial overlap with natural grasslands. Local restoration conditions (last crop, seed mixture) and landscape configuration (proportion of natural grasslands < 1 km away) did not influence the above patterns in either the repeated measures or the chronosequence design, whereas time since restoration affected almost all community variables. Our results suggest that generalist ubiquitous species appeared in restored grasslands first and the more sensitive species colonized the restored fields gradually in later years. The qualitative and quantitative properties of the orthopteran assemblages in restored fields did not yet reach those of natural grasslands, therefore, our study suggests that the full regeneration of the orthopteran assemblages takes more than four years

    Hydrothermal dolomitization of basinal deposits controlled by a synsedimentary fault system in Triassic extensional setting, Hungary

    Get PDF
    Dolomitization of relatively thick carbonate successions occurs via an effective fluid circulation mechanism, since the replacement process requires a large amount of Mg-rich fluid interacting with the CaCO3 precursor. In the western end of the Neotethys, fault-controlled extensional basins developed during the Late Triassic spreading stage. In the Buda Hills and Danube-East blocks, distinct parts of silica and organic matter-rich slope and basinal deposits are dolomitized. Petrographic, geochemical, and fluid inclusion data distinguished two dolomite types: (1) finely to medium crystalline and (2) medium to coarsely crystalline. They commonly co-occur and show a gradual transition. Both exhibit breccia fabric under microscope. Dolomite texture reveals that the breccia fabric is not inherited from the precursor carbonates but was formed during the dolomitization process and under the influence of repeated seismic shocks. Dolomitization within the slope and basinal succession as well as within the breccia zones of the underlying basement block is interpreted as being related to fluid originated from the detachment zone and channelled along synsedimentary normal faults. The proposed conceptual model of dolomitization suggests that pervasive dolomitization occurred not only within and near the fault zones. Permeable beds have channelled the fluid towards the basin centre where the fluid was capable of partial dolomitization. The fluid inclusion data, compared with vitrinite reflectance and maturation data of organic matter, suggest that the ascending fluid was likely hydrothermal which cooled down via mixing with marine-derived pore fluid. Thermal gradient is considered as a potential driving force for fluid flow

    Landscape structure, human disturbance and crop management affect foraging ground selection by migrating geese

    Get PDF
    It is well known that agricultural intensification has caused severe population declines among bird species which use farmland for breeding and overwintering, while migrating bird species may benefit from intensive farming, but in turn damage crops. Knowledge of the habitat selection of migrating birds is important from both a conservation and agro-economic point of view. We investigated the habitat preferences of three common migrating goose species: White-fronted Goose Anser albifrons, Bean Goose A. fabalis and Greylag Goose A. anser during the autumn of 2009 in western Poland. A total of 24 flocks of these species were identified. Geese preferred large, elevated fields that were remote from forests and human settlements but in close proximity to a lake. Geese selected maize stubbles and avoided winter cereals. They selected sites in landscapes with a lower diversity of crops. Flock size was negatively correlated with the proportion of pastures in the landscape, but it increased with field size, distance to forest and distance to town. Our results are in contrast with the paradigm that less intensive farmland positively influences habitat use by birds during foraging. We advise the delayed ploughing of stubbles with the aim of creating appropriate foraging habitats for geese and minimizing damage to cereal crops

    The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts

    Full text link
    © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015. The collation of biodiversity datasets with broad taxonomic and biogeographic extents is necessary to understand historical declines and to project - and hopefully avert - future declines. We describe a newly collated database of more than 1.6 million biodiversity measurements from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world

    Conservation of pollinators in traditional agricultural landscapes – New challenges in Transylvania (Romania) posed by EU accession and recommendations for future research

    Get PDF
    Farmland biodiversity is strongly declining in most of Western Europe, but still survives in traditional low intensity agricultural landscapes in Central and Eastern Europe. Accession to the EU however intensifies agriculture, which leads to the vanishing of traditional farming. Our aim was to describe the pollinator assemblages of the last remnants of these landscapes, thus set the baseline of sustainable farming for pollination, and to highlight potential measures of conservation. In these traditional farmlands in the Transylvanian Basin, Romania (EU accession in 2007), we studied the major pollinator groups-wild bees, hoverflies and butterflies. Landscape scale effects of semi-natural habitats, land cover diversity, the effects of heterogeneity and woody vegetation cover and on-site flower resources were tested on pollinator communities in traditionally managed arable fields and grasslands. Our results showed: (i) semi-natural habitats at the landscape scale have a positive effect on most pollinators, especially in the case of low heterogeneity of the direct vicinity of the studied sites; (ii) both arable fields and grasslands hold abundant flower resources, thus both land use types are important in sustaining pollinator communities; (iii) thus, pollinator conservation can rely even on arable fields under traditional management regime. This has an indirect message that the tiny flower margins around large intensive fields in west Europe can be insufficient conservation measures to restore pollinator communities at the landscape scale, as this is still far the baseline of necessary flower resources. This hypothesis needs further study, which includes more traditional landscapes providing baseline, and exploration of other factors behind the lower than baseline level biodiversity values of fields under agri-environmental schemes (AES)
    corecore