91 research outputs found

    Model Order Reduction for Rotating Electrical Machines

    Full text link
    The simulation of electric rotating machines is both computationally expensive and memory intensive. To overcome these costs, model order reduction techniques can be applied. The focus of this contribution is especially on machines that contain non-symmetric components. These are usually introduced during the mass production process and are modeled by small perturbations in the geometry (e.g., eccentricity) or the material parameters. While model order reduction for symmetric machines is clear and does not need special treatment, the non-symmetric setting adds additional challenges. An adaptive strategy based on proper orthogonal decomposition is developed to overcome these difficulties. Equipped with an a posteriori error estimator the obtained solution is certified. Numerical examples are presented to demonstrate the effectiveness of the proposed method

    Action research in physical education: focusing beyond myself through cooperative learning

    Get PDF
    This paper reports on the pedagogical changes that I experienced as a teacher engaged in an action research project in which I designed and implemented an indirect, developmentally appropriate and child‐centred approach to my teaching. There have been repeated calls to expunge – or at least rationalise – the use of traditional, teacher‐led practice in physical education. Yet despite the advocacy of many leading academics there is little evidence that such a change of approach is occurring. In my role as teacher‐as‐researcher I sought to implement a new pedagogical approach, in the form of cooperative learning, and bring about a positive change in the form of enhanced pupil learning. Data collection included a reflective journal, post‐teaching reflective analysis, pupil questionnaires, student interviews, document analysis, and non‐participant observations. The research team analysed the data using inductive analysis and constant comparison. Six themes emerged from the data: teaching and learning, reflections on cooperation, performance, time, teacher change, and social interaction. The paper argues that cooperative learning allowed me to place social and academic learning goals on an even footing, which in turn placed a focus on pupils’ understanding and improvement of skills in athletics alongside their interpersonal development

    Implementing health research through academic and clinical partnerships : a realistic evaluation of the Collaborations for Leadership in Applied Health Research and Care (CLAHRC)

    Get PDF
    Background: The English National Health Service has made a major investment in nine partnerships between higher education institutions and local health services called Collaborations for Leadership in Applied Health Research and Care (CLAHRC). They have been funded to increase capacity and capability to produce and implement research through sustained interactions between academics and health services. CLAHRCs provide a natural ‘test bed’ for exploring questions about research implementation within a partnership model of delivery. This protocol describes an externally funded evaluation that focuses on implementation mechanisms and processes within three CLAHRCs. It seeks to uncover what works, for whom, how, and in what circumstances. Design and methods: This study is a longitudinal three-phase, multi-method realistic evaluation, which deliberately aims to explore the boundaries around knowledge use in context. The evaluation funder wishes to see it conducted for the process of learning, not for judging performance. The study is underpinned by a conceptual framework that combines the Promoting Action on Research Implementation in Health Services and Knowledge to Action frameworks to reflect the complexities of implementation. Three participating CLARHCS will provide indepth comparative case studies of research implementation using multiple data collection methods including interviews, observation, documents, and publicly available data to test and refine hypotheses over four rounds of data collection. We will test the wider applicability of emerging findings with a wider community using an interpretative forum. Discussion: The idea that collaboration between academics and services might lead to more applicable health research that is actually used in practice is theoretically and intuitively appealing; however the evidence for it is limited. Our evaluation is designed to capture the processes and impacts of collaborative approaches for implementing research, and therefore should contribute to the evidence base about an increasingly popular (e.g., Mode two, integrated knowledge transfer, interactive research), but poorly understood approach to knowledge translation. Additionally we hope to develop approaches for evaluating implementation processes and impacts particularly with respect to integrated stakeholder involvement

    Examining the construction of identity among high performance male and female athletes using photography

    Get PDF
    This study, adopting a feminist perspective explored two research questions: (1) how do male and female athletes perform an athletic identity through photographic self-representation, and (2) what are the messages they look to convey, as role models, through these images? Eighteen culturally diverse high-performance athletes (12 female, 6 male; mean age = 20.56 years, SD = 2.83) representing a range of sports took part. Following an individual photo session with autonomy over image capture, participants selected their favoured image and provided a caption symbolising the message they wished to convey to others. Participants were then interviewed to obtain their thoughts, feelings and stories with regards image capture and selection. Analysis of photographic data revealed a tendency for participants to select full body action shots, located in the field of play and wearing sports clothing. Captions emphasised hard work, psychological assets, technical precision and encouraged sports participation. Interview data were organised under two broad themes aligned with the research questions; ‘performing an athletic identity’ and ‘intended messages’. Participants typically wanted to appear in action shots, emphasising good technique, displaying a sporting physique and in relevant uniforms. Intended messages reflected how to be a good role model and comprised of ideals of hard work and giving sport a go. Findings suggest that whilst athletes sought to champion their sport and the physical and psychological qualities that participation produces, gendered performances were also evident in production and interpretation of many images, thus highlighting the pervasive nature of gendered sporting participatio

    Model Order Reduction in Fluid Dynamics: Challenges and Perspectives

    Get PDF
    This chapter reviews techniques of model reduction of fluid dynamics systems. Fluid systems are known to be difficult to reduce efficiently due to several reasons. First of all, they exhibit strong nonlinearities — which are mainly related either to nonlinear convection terms and/or some geometric variability — that often cannot be treated by simple linearization. Additional difficulties arise when attempting model reduction of unsteady flows, especially when long-term transient behavior needs to be accurately predicted using reduced order models and more complex features, such as turbulence or multiphysics phenomena, have to be taken into consideration. We first discuss some general principles that apply to many parametric model order reduction problems, then we apply them on steady and unsteady viscous flows modelled by the incompressible Navier-Stokes equations. We address questions of inf-sup stability, certification through error estimation, computational issues and — in the unsteady case — long-time stability of the reduced model. Moreover, we provide an extensive list of literature references

    Projection Based Model Reduction for Optimal Design of the Time-Dependent Stokes System

    Get PDF
    The optimal design of structures and systems described by partial differential equations (PDEs) often gives rise to large-scale optimization problems, in particular if the underlying system of PDEs represents a multi-scale, multi-physics problem. Therefore, reduced order modeling techniques such as balanced truncation model reduction, proper orthogonal decomposition, or reduced basis methods are used to significantly decrease the computational complexity while maintaining the desired accuracy of the approximation. In particular, we are interested in such shape optimization problems where the design issue is restricted to a relatively small portion of the computational domain. In this case, it appears to be natural to rely on a full order model only in that specific part of the domain and to use a reduced order model elsewhere. A convenient methodology to realize this idea consists in a suitable combination of domain decomposition techniques and balanced truncation model reduction. We will consider such an approach for shape optimization problems associated with the time-dependent Stokes system and derive explicit error bounds for the modeling error. As an application in life sciences, we will be concerned with the optimal design of capillary barriers as part of a network of microchannels and reservoirs on microfluidic biochips that are used in clinical diagnostics, pharmacology, and forensics for high-throughput screening and hybridization in genomics and protein profiling in proteomics

    Projection Based Model Reduction for Optimal Design of the Time-dependent Stokes System

    No full text
    The optimal design of structures and systems described by partial differential equations (PDEs) often gives rise to large-scale optimization problems, in particular if the underlying system of PDEs represents a multi-scale, multi-physics problem. Therefore, reduced order modeling techniques such as balanced truncation model reduction, proper orthogonal decomposition, or reduced basis methods are used to significantly decrease the computational complexity while maintaining the desired accuracy of the approximation. In particular, we are interested in such shape optimization problems where the design issue is restricted to a relatively small portion of the computational domain. In this case, it appears to be natural to rely on a full order model only in that specific part of the domain and to use a reduced order model elsewhere. A convenient methodology to realize this idea consists in a suitable combination of domain decomposition techniques and balanced truncation model reduction. We will consider such an approach for shape optimization problems associated with the time-dependent Stokes system and derive explicit error bounds for the modeling error. As an application in life sciences, we will be concerned with the optimal design of capillary barriers as part of a network of microchannels and reservoirs on microfluidic biochips that are used in clinical diagnostics, pharmacology, and forensics for high-throughput screening and hybridization in genomics and protein profiling in proteomics
    • 

    corecore