325 research outputs found

    Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

    Get PDF
    Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams

    29-Si NMR and Hidden Order in URu2Si2

    Full text link
    We present new 29-Si NMR spectra in URu2Si2 for varying temperature T, and external field H. On lowering T, the systematics of the low-field lineshape and width reveal an extra component (lambda) to the linewidth below T_N ~ 17 K not observed previously. We find that lambda is magnetic-field independent and dominates the low-field lineshape for all orientations of H with respect to the tetragonal c axis. The behavior of lambda indicates a direct relationship between the 29-Si spin and the transition at T_N, but it is inconsistent with a coupling of the nuclei to static antiferromagnetic order/disorder of the U-spin magnetization. This leads us to conjecture that lambda is due to a coupling of 29-Si to the system's hidden-order parameter. A possible coupling mechanism involving charge degrees of freedom and indirect nuclear spin/spin interactions is proposed. We also propose further experiments to test for the existence of this coupling mechanism.Comment: 4 pages, 4 figures, submitted to PR

    Plasma lensing of a laser wakefield accelerated electron bunch

    Get PDF
    We report on the first all-optical demonstration of plasma lensing using laser wakefield accelerated elec-trons in a two-stage setup. The LWFA electron bunch was focused by a second plasma stage without any ex-ternal fields applied..

    Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    Get PDF
    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matched to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. Its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration

    Hot spots and dark current in advanced plasma wakefield accelerators

    Get PDF
    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed

    The FLASHForward Facility at DESY

    Get PDF
    The FLASHForward project at DESY is a pioneering plasma-wakefield acceleration experiment that aims to produce, in a few centimetres of ionised hydrogen, beams with energy of order GeV that are of quality sufficient to be used in a free-electron laser. The plasma wave will be driven by high-current density electron beams from the FLASH linear accelerator and will explore both external and internal witness-beam injection techniques. The plasma is created by ionising a gas in a gas cell with a multi-TW laser system, which can also be used to provide optical diagnostics of the plasma and electron beams due to the <30 fs synchronisation between the laser and the driving electron beam. The operation parameters of the experiment are discussed, as well as the scientific program.Comment: 19 pages, 9 figure

    All-optical density downramp injection in electron-driven plasma wakefield accelerators

    Get PDF
    Injection of well-defined, high-quality electron populations into plasma waves is a key challenge of plasma wakefield accelerators. Here, we report on the first experimental demonstration of plasma density downramp injection in an electron-driven plasma wakefield accelerator, which can be controlled and tuned in all-optical fashion by mJ-level laser pulses. The laser pulse is directed across the path of the plasma wave before its arrival, where it generates a local plasma density spike in addition to the background plasma by tunnelling ionization of a high ionization threshold gas component. This density spike distorts the plasma wave during the density downramp, causing plasma electrons to be injected into the plasma wave. By tuning the laser pulse energy and shape, highly flexible plasma density spike profiles can be designed, enabling dark current free, versatile production of high-quality electron beams. This in turn permits creation of unique injected beam configurations such as counter-oscillating twin beamlets

    Zoonotic Transfer of Clostridium difficile Harboring Antimicrobial Resistance between Farm Animals and Humans.

    Get PDF
    The emergence of Clostridium difficile as a significant human diarrheal pathogen is associated with the production of highly transmissible spores and the acquisition of antimicrobial resistance genes (ARGs) and virulence factors. Unlike the hospital-associated C. difficile RT027 lineage, the community-associated C. difficile RT078 lineage is isolated from both humans and farm animals; however, the geographical population structure and transmission networks remain unknown. Here, we applied whole-genome phylogenetic analysis of 248 C. difficile RT078 strains from 22 countries. Our results demonstrate limited geographical clustering for C. difficile RT078 and extensive coclustering of human and animal strains, thereby revealing a highly linked intercontinental transmission network between humans and animals. Comparative whole-genome analysis reveals indistinguishable accessory genomes between human and animal strains and a variety of antimicrobial resistance genes in the pangenome of C. difficile RT078. Thus, bidirectional spread of C. difficile RT078 between farm animals and humans may represent an unappreciated route disseminating antimicrobial resistance genes between humans and animals. These results highlight the importance of the "One Health" concept to monitor infectious disease emergence and the dissemination of antimicrobial resistance genes
    corecore