313 research outputs found

    Comparison of the temporal properties of medium latency responses induced by cortical and peripheral stimulation

    Get PDF
    Sudden foot dorsiflexion lengthens soleus muscle and activates stretch-based spinal reflexes. Dorsiflexion can be triggered by activating tibialis anterior (TA) muscle through peroneal nerve stimulation or transcranial magnetic stimulation (TMS) which evokes a response in the soleus muscle referred to as Medium Latency Reflex (MLR) or motor-evoked potential-80 (Soleus MEP80), respectively. This study aimed to examine the relationship between these responses in humans. Therefore, latency characteristics and correlation of responses between soleus MEP80 and MLR were investigated. We have also calculated the latencies from the onset of tibialis activity, i.e., subtracting of TA-MEP from MEP80 and TA direct motor response from MLR. We referred to these calculations as Stretch Loop Latency Central (SLLc) for MEP80 and Stretch Loop Latency Peripheral (SLLp) for MLR. The latency of SLLc was found to be 61.4 ± 5.6 ms which was significantly shorter (P = 0.0259) than SLLp (64.0 ± 4.2 ms) and these latencies were correlated (P = 0.0045, r = 0.689). The latency of both responses was also found to be inversely related to the response amplitude (P = 0.0121, r = 0.451) probably due to the activation of large motor units. When amplitude differences were corrected, i.e. investigating the responses with similar amplitudes, SLLp, and SLLc latencies found to be similar (P = 0.1317). Due to the identical features of the soleus MEP80 and MLR, we propose that they may both have spinal origins

    Mimicking human neuronal pathways in silico: an emergent model on the effective connectivity

    Get PDF
    International audienceWe present a novel computational model that detects temporal configurations of a given human neuronal pathway and constructs its artificial replication. This poses a great challenge since direct recordings from individual neurons are impossible in the human central nervous system and therefore the underlying neuronal pathway has to be considered as a black box. For tackling this challenge, we used a branch of complex systems modeling called artificial self-organization in which large sets of software entities interacting locally give rise to bottom-up collective behaviors. The result is an emergent model where each software entity represents an integrate-and-fire neuron. We then applied the model to the reflex responses of single motor units obtained from conscious human subjects. Experimental results show that the model recovers functionality of real human neuronal pathways by comparing it to appropriate surrogate data. What makes the model promising is the fact that, to the best of our knowledge, it is the first realistic model to self-wire an artificial neuronal network by efficiently combining neuroscience with artificial self-organization. Although there is no evidence yet of the model's connectivity mapping onto the human connectivity, we anticipate this model will help neuroscientists to learn much more about human neuronal networks, and could also be used for predicting hypotheses to lead future experiments

    Raman enhancement on a broadband meta-surface

    Get PDF
    Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material. © 2012 American Chemical Society

    New methodology for describing the equilibrium beach profile applied ti teh Valencia's beachs

    Get PDF
    [EN] Nuevo metodo de determinaciĂłn de la profundidad de cierre del prfil de playa y su aplicaciĂłn para ajustar el volumen de arenas de aportaciĂłn en alimentaciones artificialesAragones, L.; Serra Peris, JC.; Villacampa, Y.; Saval, JM.; Tinoco, H. (2016). New methodology for describing the equilibrium beach profile applied ti teh Valencia's beachs. Geomorphology. 259:1-11. doi:10.1016/j.geomorph.2015.06.049S11125

    Effects of kefir on coccidial oocysts excretion and performance of dairy goat kids following weaning

    Get PDF
    The aim of this study was to investigate effects of kefir, a traditional source of probiotic, on coccidial oocysts excretion and on the performance of dairy goat kids following weaning. Twin kids were randomly allocated to one of two groups at weaning. Kids of the first group received 20 ml of kefir daily for 6 weeks (KEF), while kids in the control group were given a placebo (CON). Individual faecal samples were regularly (n = 18 per kid) taken to quantify the number of coccidial oocysts per gram of faeces (OpG). There were no differences between the groups in terms of body weight development (P > 0.05) and feed consumption. Kids of both groups were not able to consume enough feed to meet their nutrient requirements during the first 3 weeks following weaning. KEF had a lower frequency of OpG positive samples than CON (P = 0.043). Kefir did not affect the maximum oocyst excretion and age of the kids at the highest oocyst excretion (P > 0.05). KEF shed numerically 35% lower coccidial oocysts than the controls, which corresponded to a statistical tendency (P = 0.074) in lowering Log-OpG in comparison to CON. While KEF had a lower frequency of OpG positive samples and tended to shed lower OPG by around one-third, the frequency of diarrhea, level of highest oocyst excretion, and performance of the kids remained unaffected. Therefore, it is concluded that overall effects of kefir do not have a significant impact on sub-clinical infection and performance in weaned kids under relatively high-hygienic farming conditions

    Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers

    Get PDF
    The aim of this work was to investigate alternative safe and effective permeation enhancers for buccal peptide delivery. Basic amino acids improved insulin solubility in water while 200 and 400 µg/mL lysine significantly increased insulin solubility in HBSS. Permeability data showed a significant improvement in insulin permeation especially for 10 µg/mL of lysine (p < 0.05) and 10 µg/mL histidine (p < 0.001), 100 µg/mL of glutamic acid (p < 0.05) and 200 µg/mL of glutamic acid and aspartic acid (p < 0.001) without affecting cell integrity; in contrast to sodium deoxycholate which enhanced insulin permeability but was toxic to the cells. It was hypothesized that both amino acids and insulin were ionised at buccal cavity pH and able to form stable ion pairs which penetrated the cells as one entity; while possibly triggering amino acid nutrient transporters on cell surfaces. Evidence of these transport mechanisms was seen with reduction of insulin transport at suboptimal temperatures as well as with basal-to-apical vectoral transport, and confocal imaging of transcellular insulin transport. These results obtained for insulin is the first indication of a possible amino acid mediated transport of insulin via formation of insulin-amino acid neutral complexes by the ion pairing mechanism
    • …
    corecore