53 research outputs found

    Assessing the Effects of Climate on Host-Parasite Interactions: A Comparative Study of European Birds and Their Parasites

    Get PDF
    [Background] Climate change potentially has important effects on distribution, abundance, transmission and virulence of parasites in wild populations of animals. [Methodology/Principal Finding] Here we analyzed paired information on 89 parasite populations for 24 species of bird hosts some years ago and again in 2010 with an average interval of 10 years. The parasite taxa included protozoa, feather parasites, diptera, ticks, mites and fleas. We investigated whether change in abundance and prevalence of parasites was related to change in body condition, reproduction and population size of hosts. We conducted analyses based on the entire dataset, but also on a restricted dataset with intervals between study years being 5–15 years. Parasite abundance increased over time when restricting the analyses to datasets with an interval of 5–15 years, with no significant effect of changes in temperature at the time of breeding among study sites. Changes in host body condition and clutch size were related to change in temperature between first and second study year. In addition, changes in clutch size, brood size and body condition of hosts were correlated with change in abundance of parasites. Finally, changes in population size of hosts were not significantly related to changes in abundance of parasites or their prevalence. [Conclusions/Significance] Climate change is associated with a general increase in parasite abundance. Variation in laying date depended on locality and was associated with latitude while body condition of hosts was associated with a change in temperature. Because clutch size, brood size and body condition were associated with change in parasitism, these results suggest that parasites, perhaps mediated through the indirect effects of temperature, may affect fecundity and condition of their hosts. The conclusions were particularly in accordance with predictions when the restricted dataset with intervals of 5–15 years was used, suggesting that short intervals may bias findings.The Academy of Finland is acknowledged for a grant to TE (project 8119367) and EK (project 250709). PLP was supported by a research grant (TE_291/2010) offered by the Romanian Ministry of Education and Science. T. Szép received funding from OTKA K69068 and JT from OTKA 75618. JMP was supported by a JAE grant from Consejo Superior de Investigaciones Científicas. SM-JM, FdL-AM, JF, JJS and FV were respectively supported by projects CGL2009-09439, CGL2012-36665, CGL2009- 11445, CGL2010-19233-C03-01 and CGL2008-00562 by the Spanish Ministry of Science and Innovation and FEDER and project EVITAR by the Spanish Ministry of Health. FV was also supported by the European Regional Development Fund. MACT was funded by a predoctoral FPU grant from the Spanish Ministry of Education (AP20043713). PM was supported by grant from the Polish Ministry of Science and Higher Education (project 2P04F07030), and the Foundation for Polish Science

    The effect of climate change on avian offspring production: A global meta-analysis

    Get PDF
    Climate change affects timing of reproduction in many bird species, but few studies have investigated its influence on annual reproductive output. Here, we assess changes in the annual production of young by female breeders in 201 populations of 104 bird species (N = 745,962 clutches) covering all continents between 1970 and 2019. Overall, average offspring production has declined in recent decades, but considerable differences were found among species and populations. A total of 56.7% of populations showed a declining trend in offspring production (significant in 17.4%), whereas 43.3% exhibited an increase (significant in 10.4%). The results show that climatic changes affect offspring production through compounded effects on ecological and life history traits of species. Migratory and larger-bodied species experienced reduced offspring production with increasing temperatures during the chick-rearing period, whereas smaller-bodied, sedentary species tended to produce more offspring. Likewise, multi-brooded species showed increased breeding success with increasing temperatures, whereas rising temperatures were unrelated to repro- ductive success in single-brooded species. Our study suggests that rapid declines in size of bird populations reported by many studies from different parts of the world are driven only to a small degree by changes in the production of young
    corecore