424 research outputs found
Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia
Suppression of innate and adaptive B cell activation pathways by antibody coengagement of FcgammaRIIb and CD19.
The Fc receptor (FcgammaRIIb) inhibits B cell responses when coengaged with B cell receptor (BCR), and has become a target for new autoimmune disease therapeutics. For example, BCR and FcgammaRIIb coengagement via the Fc-engineered anti-CD19 XmAb5871 suppresses humoral immune responses. We now assess effects of XmAb5871 on other activation pathways, including the pathogen-associated molecular pattern receptor, TLR9. Since TLR9 signaling is implicated in autoimmune diseases, we asked if XmAb5871 could inhibit TLR9 costimulation. We show that XmAb5871 decreases ERK and AKT activation, cell proliferation, cytokine, and IgG production induced by BCR and/or TLR9 signals. XmAb5871 also inhibited differentiation of citrullinated peptide-specific plasma cells from rheumatoid arthritis patients. XmAb5871 may therefore have potential to suppress pathogenic B cells in autoimmune diseases
Soluble TNF Mediates the Transition from Pulmonary Inflammation to Fibrosis
BACKGROUND: Fibrosis, the replacement of functional tissue with excessive fibrous tissue, can occur in all the main tissues and organ systems, resulting in various pathological disorders. Idiopathic Pulmonary Fibrosis is a prototype fibrotic disease involving abnormal wound healing in response to multiple sites of ongoing alveolar epithelial injury. METHODOLOGY/PRINCIPAL FINDINGS: To decipher the role of TNF and TNF-mediated inflammation in the development of fibrosis, we have utilized the bleomycin-induced animal model of Pulmonary Fibrosis and a series of genetically modified mice lacking components of TNF signaling. Transmembrane TNF expression is shown to be sufficient to elicit an inflammatory response, but inadequate for the transition to the fibrotic phase of the disease. Soluble TNF expression is shown to be crucial for lymphocyte recruitment, a prerequisite for TGF-b1 expression and the development of fibrotic lesions. Moreover, through a series of bone marrow transfers, the necessary TNF expression is shown to originate from the non-hematopoietic compartment further localized in apoptosing epithelial cells. CONCLUSIONS: These results suggest a primary detrimental role of soluble TNF in the pathologic cascade, separating it from the beneficial role of transmembrane TNF, and indicate the importance of assessing the efficacy of soluble TNF antagonists in the treatment of Idiopathic Pulmonary Fibrosis
Inhibition of Soluble Tumor Necrosis Factor Ameliorates Synaptic Alterations and Ca2+ Dysregulation in Aged Rats
The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4–6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca2+ channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling
Investigating strangeness enhancement in jet and medium via φ(1020) production in p−Pb collisions at √sNN = 5.02 TeV
This work aims to differentiate strangeness produced from hard processes (jet-like) and softer processes (underlying event) by measuring the angular correlation between a high-momentum trigger hadron (h) acting as a jet-proxy and a produced strange hadron (φ(1020) meson). Measuring h−φ correlations at midrapidity in p−Pb collisions at √sNN = 5.02 TeV as a function of event multiplicity provides insight into the microscopic origin of strangeness enhancement in small collision systems. The jet-like and the underlying-event-like strangeness production are investigated as a function of event multiplicity. They are also compared between a lower and higher momentum region. The evolutions of the per-trigger yields within the near-side (aligned with the trigger hadron) and away-side (in the opposite direction of the trigger hadron) jets are studied separately, allowing for the characterization of two distinct jet-like production regimes. Furthermore, the h−φ correlations within the underlying event give access to a production regime dominated by soft production processes, which can be compared directly to the in-jet production. Comparisons between h−φ and dihadron correlations show that the observed strangeness enhancement is largely driven by the underlying event, where the φ/h ratio is significantly larger than within the jet regions. As multiplicity increases, the fraction of the total φ(1020) yield coming from jets decreases compared to the underlying event production, leading to high-multiplicity events being dominated by the increased strangeness production from the underlying event
Observation of abnormal suppression of f0(980) production in p-Pb collisions at √sNN=5.02 TeV
The dependence of f0(980) production on the final-state charged-particle multiplicity in p–Pb collisions at sNN=5.02 TeV is reported. The production of f0(980) is measured with the ALICE detector via the f0(980)→π+π− decay channel in a midrapidity region of −0.5<0. Particle yield ratios of f0(980) to π and K⁎(892)0 are found to be decreasing with increasing charged-particle multiplicity. The magnitude of the suppression of the f0(980)/π and f0(980)/K⁎(892)0 yield ratios is found to be dependent on the transverse momentum pT, suggesting different mechanisms responsible for the measured effects. Furthermore, the nuclear modification factor QpPb of f0(980) is measured in various multiplicity ranges. The QpPb shows a strong suppression of the f0(980) production in the pT region up to about 4 GeV/c. The results on the particle yield ratios and QpPb for f0(980) may help to understand the late hadronic phase in p–Pb collisions and the nature of the internal structure of f0(980) particle
Common femtoscopic hadron-emission source in pp collisions at the LHC
The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at root s = 13 TeV from charged pi-pi correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass (m(T)) of the pairs, leading to the observation of a common scaling for both pi-pi and K-p, suggesting a collective effect. Further, the present results are compatible with the mT scaling of the p-p and p-Lambda primordial source measured by ALICE in high multiplicity pp collisions, providing additional evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron-hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles
First Measurement of the |t| Dependence of Incoherent J/ψ Photonuclear Production
The first measurement of the cross section for incoherent photonuclear production of J/ψ vector mesons as a function of the Mandelstam |t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, |y|<0.8, using ultraperipheral collisions of Pb nuclei at a center-of-mass energy per nucleon pair of sNN=5.02 TeV. This rapidity interval corresponds to a Bjorken-x range (0.3-1.4)×10-3. Cross sections are given in five |t| intervals in the range 0.04<|t|<1 GeV2 and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a |t| dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data
Emergence of Long-Range Angular Correlations in Low-Multiplicity Proton-Proton Collisions
This Letter presents the measurement of near-side associated per-trigger yields, denoted ridge yields, from the analysis of angular correlations of charged hadrons in proton-proton collisions at s=13 TeV. Long-range ridge yields are extracted for pairs of charged particles with a pseudorapidity difference of 1.4<|Δη|<1.8 and a transverse momentum of 1<2 GeV/c, as a function of the charged-particle multiplicity measured at midrapidity. This Letter extends the measurements of the ridge yield to the low multiplicity region, where in hadronic collisions it is typically conjectured that a strongly interacting medium is unlikely to be formed. The precision of the new low multiplicity results allows for the first direct quantitative comparison with the results obtained in e+e- collisions at s=91 GeV and s=183-209 GeV, where initial-state effects such as preequilibrium dynamics and collision geometry are not expected to play a role. In the multiplicity range
First measurement of prompt and non-prompt D⁎+ vector meson spin alignment in pp collisions at s=13 TeV
This letter reports the first measurement of spin alignment, with respect to the helicity axis, for D*+ vector mesons and their charge conjugates from charm-quark hadronisation (prompt) and from beauty-meson decays (non-prompt) in hadron collisions. The measurements were performed at midrapidity (|y| D0 (-> K- pi+) pi+ decay products, in the D*+ rest frame, with respect to the D*+ momentum direction in the pp centre of mass frame. The rho_00 value for prompt D*+ mesons is consistent with 1/3, which implies no spin alignment. However, for non-prompt D*+ mesons an evidence of rho_00 larger than 1/3 is found. The measured value of the spin density element is in the interval, which is consistent with a Pythia 8 Monte Carlo simulation coupled with the EvtGen package, which implements the helicity conservation in the decay of D*+ meson from beauty mesons. In non-central heavy-ion collisions, the spin of the D*+ mesons may be globally aligned with the direction of the initial angular momentum and magnetic field. Based on the results for pp collisions reported in this letter it is shown that alignment of non-prompt D*+ mesons due to the helicity conservation coupled to the collective anisotropic expansion may mimic the signal of global spin alignment in heavy-ion collisions
- …
