30 research outputs found

    Orbital size measurement based on computed tomography imaging for surgical safety

    Get PDF
    Determining the orbital size makes it possible to manoeuvre safely within theorbit during a surgical procedure. Based on the measurements performed ona multi-layer head computed tomography images, the length was determined of the medial, superior, inferior and lateral orbital walls. Also angles were determined between the superior and inferior walls, between the medial and lateral walls, between the inferior wall and Frankfurt plane and between the anterior and posterior segments of the orbital wall. With these measurements it was possible to establish that the safe space for surgical exploration of the orbit (that is the space between the orbital margin and optic canal) is approximately 40 mm. Moreover, it was determined that the medial wall is parallel to the vertical axis of the body and that the angle between the inferior wall and the Frankfurt plane is 19.7°. The angle between the posterior segment of the inferior wall (posterior to the inferior orbital fissure) and the anterior segment is 130.8°. These data will significantly increase the safety of orbital surgeries

    Premature Destruction of Microbubbles during Voiding Urosonography in Children and Possible Underlying Mechanisms: Post Hoc Analysis from the Prospective Study.

    Get PDF
    The aim of this study is to describe premature microbubbles destruction with contrast-enhanced voiding urosonography (ce-VUS) in children using 2nd-generation ultrasound contrast agents (UCA) and to hypothesize about the reason. 141 children (61 females and 80 males) were included in the study, with mean age of 3.3 years (range 4 weeks-16.0 years), who underwent ce-VUS examination between 2011 and 2014. Premature destruction of the microbubbles in the urinary bladder during ce-VUS was observed in 11 children (7.8%). In all these cases the voiding phase of ce-VUS examination could not be performed because of destroyed UCA microbubbles. This was noted in anxious, crying infants and children with restricted voiding. The premature destruction of ultrasound contrast agent during ce-VUS is an underreported, important limitation of ce-VUS, which prevents evaluation of the voiding phase and the establishment of vesicoureteric reflux (VUR). This was particularly noted in crying infants and children

    An algorithm for preoperative differential diagnostics of parotid tumours on the basis of their dynamic and diffusion-weighted magnetic resonance images: a retrospective analysis of 158 cases

    Get PDF
    Background: To verify the usefulness of a new algorithm for preoperative differential diagnostics of parotid tumours on the basis of their dynamic and diffusion- -weighted magnetic resonance imaging (MRI). Materials and methods: The retrospective analysis included 158 consecutive surgical patients with parotid tumours. Aside from ultrasound-guided fine needle biopsy, the protocol of preoperative evaluation included dynamic and diffusion-weighted MRI. According to the new diagnostic algorithm, the result of fine needle biopsy was considered only in the case of lesions with time to peak enhancement (Tpeak) > 60 s and washout rate (WR) ≤ 30% on dynamic MRI and apparent diffusion coefficient (ADC) ≤ 1.7 × 103 mm/s2 on diffusion-weighted MRI, or those presenting with concomitant lymphadenopathy. The accuracy of this algorithm was verified against final histopathological diagnoses. Results: The new algorithm gave 10 true positive and 2 false positive results, as well as 132 and 14 true and false negative results, respectively. Its sensitivity and specificity (41.7% and 98.5%, respectively) were the same as in the case of fine needle biopsy alone. None of the 59 tumours that were qualified as benign solely on the basis of preoperative MRI turned out to be malignant on postoperative histopathological examination. Conclusions: Interpreted together, dynamic and diffusion-weighted MRIs provide the same accuracy in preoperative differential diagnostics of parotid tumours as fine needle biopsy. This substantiates the use of diagnostic algorithms in which biopsy would serve mostly as a secondary test to verify selected ambiguous radiological diagnoses. (Folia Morphol 2018; 77, 1: 29–35)

    Tractography-guided surgery of brain tumours: what is the best method to outline the corticospinal tract?

    Get PDF
    Background: Diffusion tensor imaging (DTI) is the imaging technique used in vivo to visualise white matter pathways. The cortico-spinal tract (CST) belongs to one of the most often delineated tracts preoperatively, although the optimal DTI method has not been established yet. Considering that various regions of interests (ROIs) could be selected, the reproducibility of CST tracking among different centres is low. We aimed to select the most reliable tractography method for outlining the CST for neurosurgeons. Materials and methods: Our prospective study consisted of 32 patients (11 males, 21 females) with a brain tumour of various locations. DTI and T1-weighed image series were acquired prior to the surgery. To draw the CST, the posterior limb of the internal capsule (PLIC) and the cerebral peduncle (CP) were defined as two main ROIs. Together with these main ROIs, another four cortical endpoints were selected: the frontal lobe (FL), the supplementary motor area (SMA), the precentral gyrus (PCG) and the postcentral gyrus (POCG). Based on these ROIs, we composed ten virtual CSTs in DSI Studio. The fractional anisotropy, the mean diffusivity, the tracts’ volume, the length and the number were compared between all the CSTs. The degree of the CST infiltration, tumour size, the patients’ sex and age were examined. Results: Significant differences in the number of tracts and their volume were observed when the PLIC or the CP stood as a single ROI comparing with the two- ROI method (all p < 0.05). The mean CST volume was 40054U (SD ± 12874) and the number of fibres was 259.3 (SD ± 87.3) when the PLIC was a single ROI. When the CP was a single ROI, almost a half of fibres (147.6; SD ± 64.0) and half of the CST volume (26664U; SD ± 10059U) was obtained (all p < 0.05). There were no differences between the various CSTs in terms of fractional anisotropy, mean diffusivity, the apparent diffusion coefficient, radial diffusivity and the tract length (p > 0.05). The CST was infiltrated by a growing tumour or oedema in 17 of 32 patients; in these cases, the mean and apparent diffusion of the infiltrated CST was significantly higher than in uncompromised CSTs (p = 0.04). CST infiltration did not alter the other analysed parameters (all p > 0.05). Conclusions: A universal method of DTI of the CST was not developed. However, we found that the CP or the PLIC (with or without FL as the second ROI) should be used to outline the CST

    Morphometric evaluation of the delayed cerebral arteries response to acetazolamide test in patients with chronic carotid artery stenosis using computed tomography angiography

    Get PDF
    Background: The evidence accumulates that the response to acetazolamide test is delayed on the ipsilateral side to stenosis. However, the effect of acetazolamide beyond 30 min after acetazolamide administration remains unknown. The aim of this study was to assess the diameters of anterior cerebral arteries (ACAs), middle cerebral arteries (MCAs) and posterior cerebral arteries (PCAs) before and 60 min after the acetazolamide test. Materials and methods: Seventeen patients with carotid artery stenosis ≥ 90% on the ipsilateral side and ≤ 50% on the contralateral side were enrolled into the study. Diagnosis was based on ultrasonography examination and was confirmed using digital subtractive angiography. In all patients, two computed tomography angiography examinations were carried out; the first was performed before the acetazolamide administration, while the second one was carried out 60 min after injections. Results: In response to the acetazolamide test: PCA diameter diminished in both ipsi- and contra-lateral side to stenosis (from 1.31 to 1.24 mm and from 1.23 to 1.15 mm, respectively), ACA and MCA decreased in the contralateral side to the stenosis (from 1.33 to 1.26 mm and from 2.75 to 2.66 mm, respectively), ACA and MCA increased in the ipsilateral side to the stenosis (from 1.29 to 1.46 mm and from 2.77 to 2.96 mm, respectively). All changes were statistically significant. Conclusions: There were significant differences in reactivity to acetazolamide challenge between the internal carotid artery (ICA) and vertebrobasilar circulation in patients suffering from chronic carotid artery stenosis. Within the ICA territory, ACA and MCA responses vary in the affected and not affected side.

    Intracranial region of the vertebral artery: morphometric study in the context of clinical usefulness

    Get PDF
    Background: The aim of this study was to analyse the morphometry of the intracranial segment of the vertebral artery in the context of clinical usefulness. The results were compared with published data available in full-text archived medical journals. Materials and methods: More than 100 digital subtraction angiography (DSA) and 3-dimensional (3D) angio-computed tomography (CT) examinations were used to measure the following parameters: the whole and partial length of V4 in characteristic anatomical points, the diameter in three places (on the level of foramen magnum, in point of exit to the posterior inferior cerebellar artery, and in the vertebro-basilar junction), the angle of connection to the vertebral arteries, and all anatomical variations including fenestration, duplication, dolichoectasia or absent artery. Results: The left V4 section was predominant over the right artery, which is manifested by length, width, cases of ectasia and fewer cases of hypoplasia. The incidences of V4 ectasia were identified more often than those documented in the accessible literature, and they were found in the natural location of formation of saccular aneurysms. Conclusions: The presented knowledge of anatomical variation and abnormali­ties of vertebral circulation can improve the accuracy and “safety” of the surgical procedures in this region, help to determine the range of surgical approach and avoid associated complications. The radiological examinations using 3D CT, DSA reveal unlimited observation of anatomical structures in contrast to studies based on cadavers, and can complement the morphometry in anatomical preparations

    10Kin1day: A Bottom-Up Neuroimaging Initiative.

    Get PDF
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain

    The use of the synthesis and analysis of the electrical circuits for determining the brain tissue vascular resistance

    No full text
    W pracy przedstawiono schemat obwodowy odwzorowujący przepływ krwi przez tkankę mózgową oraz metodę identyfikacji jego parametrów elektrycznych na podstawie rzeczywistych danych medycznych otrzymanych w wyniku zastosowania nieinwazyjnych procedur zabiegowych. Celem modelowania i identyfikacji jest usprawnienie diagnostyki patologii mózgowych o podłożu naczyniowym. Podczas identyfikacji uwzględniono średnie wartości regionalnego przeływu krwi (rCBF) i ciśnienia tętniczego (MAP), którym w schemacie obwodowym odpowiada stały prąd i napięcie. Dysponując jedynie stałym napięciem i prądem syntezowano obwód prądu stałego, w którym rezystancjom odpowiadają wypadkowe opory naczyniowe warstw skanowanej tkanki mózgowej. Praca została wykonana w ramach projektu „Interdyscyplinarna kadra akademicka na rzecz rozwoju gospodarki opartej na wiedzy” współfinansowanego ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.In this study, the results of computed tomography perfusion (p-CT) was used to create a model of blood flow through the brain tissue as a constant current circuit. The equivalent electric circuit of the blood flow has been developed on the basis of similarities between electrical engineering and haemodynamics. Created model allows us to determine the additional hemodynamic brain blood flow in the form of resistance. The resistances in circuit are corresponding to vascular resistance for the individual layers and the entire scanned area of the brain. The mathematical model that results from the electric circuit, allows the analysis of the relationship between the layers of p-CT. The purpose of the modeling of brain tissue using an electrical circuit and then the identification of his parameters is a need to improve the diagnosis of cerebral vascular pathology. This work was financially supported by the European Community from the European Social Fund within the INTERKADRA project
    corecore