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Abstract 

Background: Diffusion tensor imaging (DTI) is the imaging technique used in vivo to 

visualize white matter pathways. The corticospinal tract (CST) belongs to one of the most 

often delineated tracts preoperatively, although, the optimal DTI method has not been 

established yet. Considering that various regions of interests (ROIs) could be selected, the 

reproducibility of CST tracking among different centres is low. We aimed to select the most 

reliable tractography method for outlining the CST for neurosurgeons. 

Materials and methods: Our prospective study consisted of 32 patients (11 males, 21 

females) with a brain tumour of various locations. DTI and T1-weighed image series were 

acquired prior to the surgery. To draw the CST, the posterior limb of the internal capsule 

(PLIC) and the cerebral peduncle (CP) were defined as two main ROIs. Together with these 

main ROIs, another four cortical endpoints were selected: the frontal lobe (FL), the 

supplementary motor area (SMA), the precentral gyrus (PCG) and the postcentral gyrus 



(POCG). Based on these ROIs, we composed ten virtual CSTs in DSI Studio. The fractional 

anisotropy, the mean diffusivity, the tracts’ volume, the length and the number were 

compared between all the CSTs. The degree of the CST infiltration, tumour size, the patients’ 

sex and age were examined. 

Results: Significant differences in the number of tracts and their volume was observed when 

the PLIC or the CP stood as a single ROI comparing with the two-ROIs method (all p<0.05). 

The mean CST volume was 40054U; SD ±12874 and the number of fibres was 259.3; SD 

±87.3 when the PLIC was a single ROI. When the CP was a single ROI, almost a half of 

fibres (147.6; SD ±64.0) and half of the CST volume (26664U; SD ±10059U) was obtained 

(all p<0.05). There were no differences between the various CSTs in terms of fractional 

anisotropy, mean diffusivity, the apparent diffusion coefficient, radial diffusivity and the tract 

length (p>0.05). The CST was infiltrated by a growing tumour or edema in 17 of 32 patients; 

in these cases, the mean and apparent diffusion of the infiltrated CST was significantly higher 

than in uncompromised CSTs (p=0.04). CST infiltration did not alter the other analysed 

parameters (all p>0.05). 

Conclusions: A universal method of DTI of the CST was not developed. However, we found 

that the CP or the PLIC (with or without FL as the second ROI) should be used to outline the 

CST. 

Key words: diffusion tensor imaging, diffusion tensor tractography, tractography, 

corticospinal tract, pyramidal tract, glioma surgery, neurosurgery 

 

 

INTRODUCTION 

 A neurosurgeon’s objective is to achieve maximal tumour resection without 

producing new neurological defects [1,2]; this includes preserving the cortico-spinal tract 

(CST). The CST is a white matter bundle that together with corticobulbar tract composes the 

pyramidal tract and if damaged it may lead to postoperative paresis [3]. Proper preoperative 

visualisation of the CST and its integration via a intraoperative neuronavigational system 

could potentially preserve neurological function and simultaneously increase the resection 

rate [2,4]. However, several technical obstacles underlie correct delineation of the CST, 

including: knowledge of an individual’s topographical anatomy, a physician’s experience and 

the degree of destruction of the neuronal pathway through the tumour [5,6].  



Magnetic resonance imaging (MRI) scans are routinely acquired when planning brain 

tumour surgery. Yet, they provide only general information about the brain’s pathology and 

the surrounding structures. Diffusion tensor imaging (DTI)—which provides a quick and non-

invasive method for visualising structural changes of the white matter—can be used for 

visualisation of the CST [7,8]. This technique not only plays an important role in 

neurosurgical planning but may predict the extent of safe resection [9–11]. However, 

physicians currently select various regions of interest (ROI) to draw the CST as the optimal 

DTI-derived method to estimate the course of the CST has not yet been established [12]. Due 

to this lack of standardization, the reliability of tracking the CST among different centres 

remains low [5].  

Our aim was to determine the optimal DTI-derived method to reconstruct the CST as 

well as to verify if a single ubiquitous method exists. To accomplish this, we compared CST 

tracking as determined by various ROIs. 

 

MATERIALS AND METHODS 

Patients  

32 patients with a brain tumour invading the CST were prospectively collected (11 

males, 21 females; age 27-81 years, mean ±SD and median age: 53.4 ±17.1 /53.5). These 

patients were treated at the Neurosurgery Department in Gdańsk, Poland, from 2016 to 2019. 

The protocol of the study was approved by the local bioethical committee, permission 

number: NKBBN/65/2019. 

 

Image acquisition 

 All patients had a preoperative MRI with a DTI sequence preformed on a 1.5T 

Siemens Magnetom Aera scanner (Erlangen, Siemens Medical Solutions, Erlangen, Germany) 

which was equipped with a 20-channel head coil. The standard imaging protocol for brain 

tumours covered T1, T2-weighed sequences and T1-weighed post-gadolinium which served 

as a neuronavigational sequence. Diffusion-weighted imaging (DWI) was obtained using: 

three repetitions of 20 directions, a b-factor of 1000 s/m2, a slice thickness of 5.0 mm, a 

128x128 matrix, a 240x240 mm field-of-view, a repetition time of 3500 ms, and an echo time 

of 83.0 ms. A multivariate linear fitting was used to calculate the orientation for a single 

voxel. The largest eigenvalue denoted the ultimate fibre direction. A total of 60 diffusion 



sampling directions were acquired. The in-plane resolution was 1.95313 mm. The slice 

thickness was 2 mm. The diffusion tensor was calculated and a deterministic fibre tracking 

algorithm was used [13]. The angular threshold was 90 degrees. The step size was 0.977 mm. 

Diffusion images were processed and all the analyses were conducted using DSI Studio (dsi-

studio.labsolver.org). We calculated the fractional anisotropy (FA), the mean diffusivity (MD) 

and the apparent diffusion coefficient (ADC). The anisotropy threshold was determined 

automatically by the software. The fibre trajectories were smoothed by averaging the 

propagation direction with 30% of the previous direction. Tracks with a length less than 

30mm were discarded. A total of 15000 tracts were calculated. When reconstructing the CST, 

we obtained tract statistics, including: the number of tracks, the mean length, the volume of 

the CST, the FA, the AD, and the MD values. The ROI was selected according to brain 

landmarks that the CST passed through and the anatomical automatic atlas provided by DSI-

Studio. Hence, we verified again all patients and tested methods which were used for drawing 

CST by other researchers.  

After reviewing recent methods of DTI of the CST, we utilized two basic type of ROIs 

to outline the CST [1,4–6,12,14,15]. Two main ROIs were designated as “start points”: the 

cerebral peduncle (CP) and the posterior limb of internal capsule (PLIC). The following were 

established as “end points”: the precentral gyrus (PCG), the postcentral gyrus (POCG), the 

supplementary motor area (SMA) and the frontal lobe (FL). By mixing and matching various 

combinations of the start point and the end point we obtained ten different CSTs for analysis. 

An example is illustrated on Figure 1. 

 

RESULTS 

The CST was reconstructed by 10 different algorithms for each of the 32 patients in 

the study, resulting in a total of 320 outlines of the CST. The fibres were visualized with DSI-

studio to show the anatomical validity of the reconstruction results and we overlay the CST 

fibres bundles with the FA image. Although the CST was outlined in every patient, a few 

selected variables could not be calculated due to unknown internal software error(s). The 

average number of tracts that were obtained with the ten algorithms are summarised in Table 

1. 



A significantly higher volume (40054U; SD ±12874U) and number of CST tracts 

(259.3; SD ±87.3) were obtained when a single ROI was set at the PLIC comparing to all 

other ROIs (all p<0.05). In contrast, almost 50% less fibres (147.6; SD ±64.0) and volume 

(26664U; SD ±10059U) was achieved when the CP was set as the ROI (both p<0.05) rather 

than the PLIC. Altogether, the PLIC and CP as starting points comprised a 6.1-fold and 4.7-

fold greater number of fibres respectively than the most common anatomical course of the 

CST (first ROI set at CP or PLIC, and the cortical ROI set at the precentral gyrus (preCG) 

(p<0.01). 

Setting the FL as the endpoint ROI yielded the highest number of tracts (PLIC and FL: 

115.6; SD ±65.0) and the highest tract volume (CP and FL: 71.1; SD ±41.3). 

There were no significant differences between the various CSTs in terms of the mean 

diffusion parameters (FA, MD, apparent diffusion and radial diffusivity) and mean tract 

length. However, all these values were insignificant when the SMA was set as a ROI. (Fig. 2) 

17 of the 32 patients (53.1%) with preoperative hemiparesis had a brain tumour or 

oedema which infiltrated the CST. Even though the degree of infiltration on the CST was not 

evaluated, the FA, the number of tracts and the tract volumes did not differ between the CSTs 

drawn in ten configurations of the ROIs (all p>0.05). However, in patients with CST 

infiltration through the CP, the MD and the apparent diffusion (AD) was significantly higher 

than in patients without tract infiltration (p= 0.04). This may result from the tumour 

infiltrating not only the CST but other fibres which are drawn only when the CP is selected as 

a single ROI. The higher AD was also observed when the postcentral gyrus was added as an 

additional ROI to the PLIC (p= 0.03). This patient group was mostly diagnosed high grade 

glioblastoma or oligodendroglioma located by the left fronto-parietal lobe, which may explain 

the finding. 

 As seen on part D and E on Figure 2, we compared the FA and MD values of the CST 

between the two brain hemispheres and the patient’s sex, yet neither hemisphere yielded 

significantly different values (all p>0.05). However, patients older than 55 years had a 

significantly higher MD when the CST was traced from a start point ROI (p=0.031), an 

endpoint ROI 2 (0.036) and a start point ROI with an end point in the FL (p=0.013). All the 

statistics comparing the 10 methods of tracking the CST are presented on Supplementary 

Table 1 (see journal website) (Figure 3). 

 

DISCUSSION 



We found that while there is no universal way of determining the CST, the CP or the 

PLIC should be exclusively used as the starting point ROI—regardless of whether the FL is 

used as the second ROI. This information is invaluable to neurosurgeons as it empowers them 

to obtain the most optimal view of the CST using DTI. Allowing a surgeon to better 

understand the spatial orientation between the tumour and the CST fibres may help preserve 

the CST and therefore minimalize the risk of postoperative paresis; since the CST directs the 

movement of the limbs and the trunk [16]. To the best of our knowledge our findings are 

novel as our study is the first to compare the various DTI techniques regarding the CST. 

It is an established issue that a long fibre bundle may not be recognised as a real fibre. 

Chenot proved that by using standard ROIs (i.e. PLIC and CP) we obtain a CST far beyond 

the primary motor cortex [3]. They showed that the CST streamlines from the premotor and 

parietal cortex. This finding quarrels with the well-known course of the pyramidal tract as 

described by Dejerine in 1901 [17]. To date, the exact origin of CST and the function of its 

non-primary motor cortex originating fibres remain unclear and unproven [18]. 

For neurosurgeons, the fibres originating at the precentral gyrus are the most crucial 

while planning any surgical access near the pyramidal tracts [7,8,19,20]. A study suggests that 

the remainder of the CST fibres come from the FL, mainly from the superior frontal gyrus [3]. 

Our results confirm this since we added the entire frontal lobe as a second ROI to the PLIC or 

the CP and reduced the number of fibres and the tract volume approximately 2-fold. This 

suggests that choosing the CP or PLIC as a single ROI does seem to be the most optimal 

solution when conservative access to the brain pathology is planned to minimize damage to 

the CST. However, limiting the extent of the ROI-based DTI to the “most anatomical” course 

of the CST (primary motor cortex as a second ROI to PLIC/CP), decreases the number of 

potentially valid fibres six-fold as there is high variability of the CST volume among the 

population [3,6]. Thus, there is no universal tractographic approach to delineate the CST due 

to interference of other crossing fibre tracts (although it may be overcome when the CP or the 

PLIC stand as a single ROI) [15]. Some authors proposed using the CP and the PLIC as two 

ROI where all the fibres would run through [1,14]. At our institution we abandoned this 

technique and now use a custom DTI technique for all our patients because we believe that 

estimating the CST around the tumours at the eloquent cortex should utilize a variety of ROIs 

rather than a standardized a set due to several of the reasons indicated before. Of note, DTI 

operators almost always refer to the CP as a reference for tracking the CST, however, this 



term is slightly ambiguous. The cerebral crus is a more accurate term anatomically as it refers 

solely to the anterior part of the CP (which is the correct location for CST tracking).  

Setting the ROI at the PLIC was suggested as the approach most resembling the 

anatomical course of the CST [21]. In our study, the largest volume of the CST was achieved 

when a single ROI was selected, without indicating any termination points in the brain cortex. 

In our analysis the ROI point is relatively easy to use and is supported by most DTI data 

analysis software. The correct ROI may be determined on structural T1-weighed images due 

to their precisely defined anatomical structures. However, diffusion images that are 

directionally orientated (DEC sequence) are also useful to define the ROIs especially when 

white matter structures are being investigated. Thus, special care must be taken when 

choosing the appropriate ROI [22]. Seeding the termination ROI in a functionally active 

cortex may be regarded as the most precise method, although, this presurgical task-based 

functional MRI cannot provide reliable information about the CST in tumours located in the 

eloquent cortex [23]. In tumours located in or infiltrating the motor cortex the volume of 

interest (volumetric ROI) may not stand as a single cortical ROI for tracking the CST due to 

low accuracy [23].  

Today, computer software offers automatic (anatomical) atlases to a given brain. This 

atlas-based method or its combination with DTI has proven to be a similar predictor of 

clinical outcome when compared with traditional DTI of the CST [5]. Moreover, automatic 

CST recognition may grant an advantage when planning brain tumour surgery. Recently, 

O’Donnell et al. proposed the automatic patient-specific method for identifying the CST and 

the arcuate fasciculus and the DTI predictions corresponded with functional MRIs in 94% of 

patients [24]. Additionally, the author indicated that the true anatomical termination of the 

main human tracts remains under debate. Thus, the combination of various techniques, 

including functional MRI, DTI and computational techniques, could bring scientists closer to 

discovering the correct CST delineation. On the contrary, the supporters of awake craniotomy 

for low grade gliomas urge that neuromonitoring and intraoperative stimulation maximize the 

tumour resection rate while still preserving motor function [25]. Yet, several patients may not 

be qualified for an awake procedure due to other medical and psychological reasons. We 

stress that in the absence of functional MRIs, an intraoperative neuromonitoring or motor 

mapping pathways should be considered to support DTI. 



In patients with a high grade glioblastoma, where total resection remains critical, a 

minor neurological deficit is considered acceptable [2]. In these patients, the CP, the PLIC 

and the FL were deliberately selected as ROIs as they were the most important CST motor 

fibres that should be preserved during surgery. With this example, we assert that estimating 

the CST should be patient-specific as these changes in performing DTI are advantageous. 

Additionally, literature suggests that the CST’s trajectory can change in certain brain 

pathologies such as with a stroke, a brain tumour or in a subarachnoid haemorrhage [26]. This 

may lead to significant alteration in the CST’s original route where intraoperative direct 

stimulation cannot be substituted by other imaging techniques. Bello et al. reported that 

various types of brain tumours cause modification of white matter fibre trajectory. Based on 

the DTI analysis, a half of high grade gliomas caused dislocation and some tumors infiltrated 

or interrupted the course of tracts [27]. On the contrary, low grade gliomas only infiltrated or 

interrupted tracts since only a quarter of patients had dislocated fibres. When DTI was 

compared with intraoperative subcortical mapping, the results illustrated that the CST’s 

course was determined on the basis of DTI depended tumour location and volume [27].  

The appropriate choice between these two ROIs lies upon the discretion of the DTI 

operator. Based on our analysis, seeding the CST from the PLIC results in a significantly 

greater number of tracks and a larger volume of the CST than seeding. We postulate that since 

the CP is smaller than the PLIC, it is less packed in white matter and therefore yields different 

results [28]. The path of the white matter fibers depends on the degree of precision of the 

determined ROIs. While plotting points may be determined manually or automatically, in our 

paper, the CST was determined with an automatic anatomical atlas using 2D and 3D planes.  

Analysing the CST poses several challenges such as the disturbed anisotropy of water 

molecules and the reorganization of nerve fibres. Moreover, tissue swelling around the 

tumour may disturb the proportions of perpendicular and parallel diffusion, which decreases 

the FA; this is due to the inversely proportional ratio of average diffusivity and cellularity of 

the pathology [5]. In addition, the measurement of anisotropy may become a factor 

differentiating tumours of high and low level of malignancy [5]. 

In future studies, different tractography methods can be connected with DTI multi-

tensor acquisition. Identification of the CST should be carried out based on blood-oxygen-

level–dependent and diffusion functional MRIs [30]. These methods may help a physician 

achieve a better regional and spatial understanding of an area. 



 

CONCLUSIONS 

Our study identified the CST based on various anatomical approaches. We found that 

while there is no universal method of determining the CST, the CP or the PLIC should be 

used as the starting point ROIs. 
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Table 1. A summary of the average values of the number of tracks of ten corticospinal tracts 

obtained by a combination of various region-of-interests. 

ROI 

Number of tracts 

n 
 

Mean 
 

Median 
 

Minimum 
 

Maximum 
 

SD 
 

CP 
 

32 147.5625 144.5000 22.0000 309.0000 64.01257 

CP_preCG 
 

31 31.3548 24.0000 0.0000 211.0000 40.43888 

CP_postCG 
 

32 15.1250 12.0000 0.0000 63.0000 15.14819 

CP_SMA 
 

32 12.7500 10.0000 0.0000 46.0000 13.77000 

CP_FL 
 

32 71.1563 71.0000 3.0000 161.0000 41.26321 

PLIC 
 

32 259.2500 248.5000 126.0000 487.0000 87.34581 

PLIC_preCG 
 

32 42.3438 39.0000 1.0000 110.0000 27.32199 

PLIC_postCG 
 

32 24.0938 22.0000 2.0000 88.0000 20.76654 

PLIC_SMA 
 

32 22.4062 18.5000 0.0000 89.0000 21.31614 

PLIC_FL 
 

32 115.5938 111.0000 0.0000 287.0000 65.03640 

ROI — region of interest, CP — cerebral peduncle, preCG — precentral gyrus, postCG 

— postcentral gyrus, SMA — supplementary motor area, FL — frontal lobe, PLIC — 

posterior limb of internal capsule 

 

 

 

Figure 1. A graphic representation of different ways of drawing the cortico-spinal tract, 

where its course is determined by various regions of interest; A-E. Cerebral peduncle (CP, 

violet); F-J. Posterior limb of internal capsule (PLIC, red). A. Only CP; B. CP and frontal 

lobe (green); C. CP and precentral gyrus (yellow); D. CP and postcentral gyrus (white); E. CP 

and supplementary motor area (blue). F. Only PLIC; G. PLIC and frontal lobe (green); H. 



PLIC and precentral gyrus (yellow); I. PLIC and postcentral gyrus (white); J. PLIC and 

supplementary motor area (blue). 

 

 

Figure 2. The illustration summarizes the findings when using 10 different methods of 

outlining the corticospinal tract, including the mean: A. Number of tracts, B. Tract volume, C. 

Tract length, D. Fractional anisotropy, E. The mean diffusivity; ROI — region of interest, 

PLIC — posterior limb of internal capsule, CP — cerebral peduncle, preCG – precentral 

gyrus, postCG — postcentral gyrus, SMA — supplementary motor area, FL — frontal lobe. 

fractional anisotropy (FA), the mean diffusivity (MD). 

 

 

Figure 3. A clinical case presentation where an early postoperative magnetic resonance image 

was fused with a preoperative diffusion tensor imaging (DTI) of the cortico-spinal tract 

(CST). The subtotal resection of the secondary glioblastoma of the left fronto-parietal region 

was considered with the preservation of the fibres of the corticospinal tract to preserve foot 

function. Therefore, only the posterior limb of the internal capsule (PLIC) was selected as a 

single region of interest (ROI) to increase DTI sensitivity, regardless of the decreased parallel 

specificity as many of fibres did not belong to the CST. A-C. Axial planes, D. Coronal plane, 

motor homunculus as the injected picture. The red arrows indicate the tumour remnant left 

deliberately in the CST. The black arrows show the compromised CST fibres responsible for 

hand movement. 

 








