25 research outputs found

    The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence

    Get PDF
    BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.SE-vdA is supported by BBSRC grant BB/M014207/1. Sequencing was funded by BBSRC grant BB/F000642/1 to the University of Leeds and grant BB/F00334X/1 to the Wellcome Trust Sanger Institute). DRL was supported by a fellowship from The James Hutton Institute and the School of Biological Sciences, University of Edinburgh. GK was supported by a BBSRC PhD studentship. The James Hutton Institute receives funding from the Scottish Government. JAC and NEH are supported by the Wellcome Trust through its core funding of the Wellcome Trust Sanger Institute (grant 098051). This work was also supported by funding from the Canadian Safety and Security Program, project number CRTI09_462RD

    Genome Evolution of Asexual Organisms and the Paradox of Sex in Eukaryotes

    Get PDF

    ReproPhylo:An environment for reproducible Phylogenomics

    Get PDF
    The reproducibility of experiments is key to the scientific process, and particularly necessary for accurate reporting of analyses in data-rich fields such as phylogenomics. We present ReproPhylo, a phylogenomic analysis environment developed to ensure experimental reproducibility, to facilitate the handling of large-scale data, and to assist methodological experimentation. Reproducibility, and instantaneous repeatability, is built in to the ReproPhylo system and does not require user intervention or configuration because it stores the experimental workflow as a single, serialized Python object containing explicit provenance and environment information. This 'single file' approach ensures the persistence of provenance across iterations of the analysis, with changes automatically managed by the version control program Git. This file, along with a Git repository, are the primary reproducibility outputs of the program. In addition, ReproPhylo produces an extensive human-readable report and generates a comprehensive experimental archive file, both of which are suitable for submission with publications. The system facilitates thorough experimental exploration of both parameters and data. ReproPhylo is a platform independent CC0 Python module and is easily installed as a Docker image or a WinPython self-sufficient package, with a Jupyter Notebook GUI, or as a slimmer version in a Galaxy distribution

    Phylogeny of Tetillidae (Porifera, Demospongiae, Spirophorida) based on three molecular markers

    No full text
    Tetillidae are spherical to elliptical cosmopolitan demosponges. The family comprises eight genera: namely, Acanthotetilla Burton, 1959, Amphitethya Lendenfeld, 1907, CinachyraSollas, 1886, CinachyrellaWilson, 1925, Craniella Schmidt, 1870, Fangophilina Schmidt, 1880, Paratetilla Dendy, 1905, and Tetilla Schmidt, 1868. These genera are characterized by few conflicting morphological characters, resulting in an ambiguity of phylogenetic relationships. The phylogeny of tetillid genera was investigated using the cox1, 18S rRNA and 28S rRNA (C1–D2 domains) genes in 88 specimens (8 genera, 28 species). Five clades were identified: (i) Cinachyrella, Paratetilla and Amphitethya species, (ii) Cinachyrella levantinensis, (iii) Tetilla, (iv) Craniella, Cinachyra and Fangophilina and (v) Acanthotetilla. Consequently, the phylogenetic analysis supports the monophyly of Tetilla, a genus lacking any known morphological synapomorphy. Acanthotetilla is also recovered. In contrast, within the first clade, species of the genera Paratetilla and Amphitethya were nested within Cinachyrella. Similarly, within the fourth clade, species of the genera Cinachyra and Fangophilina were nested within Craniella. As previously postulated by taxonomists, the loss of ectodermal specialization (i.e., a cortex) has occurred several times independently. Nevertheless, the presence or absence of a cortex and its features carry a phylogenetic signal. Surprisingly, the common view that assumes close relationships among sponges with porocalices (i.e., surface depressions) is refuted

    Molecular diversity of benthic ctenophores (Coeloplanidae)

    Get PDF
    Coeloplanidae, the largest family of benthic ctenophores, comprises 33 species, all described based on traditional morphological characteristics, such as coloration, length, and number of aboral papillae, which are highly variable and can be affected by fixation methods and environmental conditions. Thus, there is a need for reliable genetic markers to complement the morphological identifications at the species level. Here, we analyzed 95 specimens from 11 morphologically distinct species of benthic ctenophores from the Red Sea and Sulu Sea, and tested selected regions of four genetic markers (ITS1, 18S rRNA, 28S rRNA and COI) for their ability to differentiate between species. We show that the barcoding region of the mitochondrial gene cytochrome oxidase subunit I (COI) is highly variable among species of Coeloplanidae, and effectively discriminates between species in this family. The average Kimura-2-parameter (K2P) distance between clades was 10%, while intraspecific variation was ~30 times lower (0.36%). COI based phylogeny supported the delineation of four recently described new species from the Red Sea. The other nuclear markers tested were found to be too conserved in order to separate between species. We conclude that COI is a potential molecular barcode for the family Coeloplanidae and suggest testing it in pelagic ctenophores
    corecore