1,277 research outputs found

    Resolved stellar population of distant galaxies in the ELT era

    Full text link
    The expected imaging capabilities of future Extremely Large Telescopes (ELTs) will offer the unique possibility to investigate the stellar population of distant galaxies from the photometry of the stars in very crowded fields. Using simulated images and photometric analysis we explore here two representative science cases aimed at recovering the characteristics of the stellar populations in the inner regions of distant galaxies. Specifically: case A) at the center of the disk of a giant spiral in the Centaurus Group, (mu B~21, distance of 4.6 Mpc); and, case B) at half of the effective radius of a giant elliptical in the Virgo Cluster (mu~19.5, distance of 18 Mpc). We generate synthetic frames by distributing model stellar populations and adopting a representative instrumental set up, i.e. a 42 m Telescope operating close to the diffraction limit. The effect of crowding is discussed in detail showing how stars are measured preferentially brighter than they are as the confusion limit is approached. We find that (i) accurate photometry (sigma~0.1, completeness >90%) can be obtained for case B) down to I~28.5, J~27.5 allowing us to recover the stellar metallicity distribution in the inner regions of ellipticals in Virgo to within ~0.1 dex; (ii) the same photometric accuracy holds for the science case A) down to J~28.0, K~27.0, enabling to reconstruct of the star formation history up to the Hubble time via simple star counts in diagnostic boxes. For this latter case we discuss the possibility of deriving more detailed information on the star formation history from the analysis of their Horizontal Branch stars. We show that the combined features of high sensitivity and angular resolution of ELTs may open a new era for our knowledge of the stellar content of galaxies of different morphological type up to the distance of the Virgo cluster.Comment: 21 pages, 17 figures, PASP accepted in pubblicatio

    Topological correlations in soap froths

    Full text link
    Correlation in two-dimensional soap froth is analysed with an effective potential for the first time. Cells with equal number of sides repel (with linear correlation) while cells with different number of sides attract (with NON-bilinear) for nearest neighbours, which cannot be explained by the maximum entropy argument. Also, the analysis indicates that froth is correlated up to the third shell neighbours at least, contradicting the conventional ideas that froth is not strongly correlated.Comment: 10 Pages LaTeX, 6 Postscript figure

    Ground-layer wavefront reconstruction from multiple natural guide stars

    Get PDF
    Observational tests of ground layer wavefront recovery have been made in open loop using a constellation of four natural guide stars at the 1.55 m Kuiper telescope in Arizona. Such tests explore the effectiveness of wide-field seeing improvement by correction of low-lying atmospheric turbulence with ground-layer adaptive optics (GLAO). The wavefronts from the four stars were measured simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x 5 array of square subapertures across the pupil of the telescope, allowing for wavefront reconstruction up to the fifth radial Zernike order. We find that the wavefront aberration in each star can be roughly halved by subtracting the average of the wavefronts from the other three stars. Wavefront correction on this basis leads to a reduction in width of the seeing-limited stellar image by up to a factor of 3, with image sharpening effective from the visible to near infrared wavelengths over a field of at least 2 arc minutes. We conclude that GLAO correction will be a valuable tool that can increase resolution and spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.

    The neural basis of perceived intensity in natural and artificial touch

    Get PDF
    Electrical stimulation of sensory nerves is a powerful tool for studying neural coding because it can activate neural populations in ways that natural stimulation cannot. Electrical stimulation of the nerve has also been used to restore sensation to patients who have suffered the loss of a limb. We have used long-term implanted electrical interfaces to elucidate the neural basis of perceived intensity in the sense of touch. To this end, we assessed the sensory correlates of neural firing rate and neuronal population recruitment independently by varying two parameters of nerve stimulation: pulse frequency and pulse width. Specifically, two amputees, chronically implanted with peripheral nerve electrodes, performed each of three psychophysical tasks-intensity discrimination, magnitude scaling, and intensity matching-in response to electrical stimulation of their somatosensory nerves. We found that stimulation pulse width and pulse frequency had systematic, cooperative effects on perceived tactile intensity and that the artificial tactile sensations could be reliably matched to skin indentations on the intact limb. We identified a quantity we termed the activation charge rate (ACR), derived from stimulation parameters, that predicted the magnitude of artificial tactile percepts across all testing conditions. On the basis of principles of nerve fiber recruitment, the ACR represents the total population spike count in the activated neural population. Our findings support the hypothesis that population spike count drives the magnitude of tactile percepts and indicate that sensory magnitude can be manipulated systematically by varying a single stimulation quantity

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber

    Gamification through leaderboards : an empirical study in engineering education

    No full text
    Universities are looking for solutions to engage more students in STEM domains and enhance their learning performance (LP). In this context, gamification is put forward as a solution to achieve this aim. The present study examined the effect of gamification – building on leaderboards ‐ on LP. Furthermore, mediating variables, such as intrinsic motivation, self‐efficacy, engagement, and background variables, such as sex, previous gaming experience, and undergraduate major, were considered. A pretest‐posttest quasi‐experimental design with an experimental and a control condition was set up (n = 89) in an Introductory Computer Programming course. We observed a significant improvement in the LP of students in the gamified condition. However, no interaction effect was detected, due to mediating and background variables. The high learning gain is a favorable indicator that gamification might be a promising approach to promote STEM programs

    Protein Pattern Formation

    Full text link
    Protein pattern formation is essential for the spatial organization of many intracellular processes like cell division, flagellum positioning, and chemotaxis. A prominent example of intracellular patterns are the oscillatory pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological function is to ensure precise cell division. Cell polarization, a prerequisite for processes such as stem cell differentiation and cell polarity in yeast, is also mediated by a diffusion-reaction process. More generally, these functional modules of cells serve as model systems for self-organization, one of the core principles of life. Under which conditions spatio-temporal patterns emerge, and how these patterns are regulated by biochemical and geometrical factors are major aspects of current research. Here we review recent theoretical and experimental advances in the field of intracellular pattern formation, focusing on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl

    Single-Step Selection of Bivalent Aptamers Validated by Comparison with SELEX Using High-Throughput Sequencing

    Get PDF
    The identification of nucleic acid aptamers would be advanced if they could be obtained after fewer rounds of selection and amplification. In this paper the identification of bivalent aptamers for thrombin by SELEX and single-step selection are compared using next generation sequencing and motif finding informatics. Results show that similar aptamers are identified by both methods. This is significant because it shows that next generation sequencing and motif finding informatics have the potential to simplify the selection of aptamers by avoiding multiple rounds of enzymatic transcription and amplification

    Integrated genomic analyses of ovarian carcinoma

    Get PDF
    A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.National Institutes of Health (U.S.) (Grant U54HG003067)National Institutes of Health (U.S.) (Grant U54HG003273)National Institutes of Health (U.S.) (Grant U54HG003079)National Institutes of Health (U.S.) (Grant U24CA126543)National Institutes of Health (U.S.) (Grant U24CA126544)National Institutes of Health (U.S.) (Grant U24CA126546)National Institutes of Health (U.S.) (Grant U24CA126551)National Institutes of Health (U.S.) (Grant U24CA126554)National Institutes of Health (U.S.) (Grant U24CA126561)National Institutes of Health (U.S.) (Grant U24CA126563)National Institutes of Health (U.S.) (Grant U24CA143882)National Institutes of Health (U.S.) (Grant U24CA143731)National Institutes of Health (U.S.) (Grant U24CA143835)National Institutes of Health (U.S.) (Grant U24CA143845)National Institutes of Health (U.S.) (Grant U24CA143858)National Institutes of Health (U.S.) (Grant U24CA144025)National Institutes of Health (U.S.) (Grant U24CA143866)National Institutes of Health (U.S.) (Grant U24CA143867)National Institutes of Health (U.S.) (Grant U24CA143848)National Institutes of Health (U.S.) (Grant U24CA143843)National Institutes of Health (U.S.) (Grant R21CA135877

    25-Hydroxyvitamin D levels and chronic kidney disease in the AusDiab (Australian Diabetes, Obesity and Lifestyle) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low 25-hydroxy vitamin D (25(OH)D) levels have been associated with an increased risk of albuminuria, however an association with glomerular filtration rate (GFR) is not clear. We explored the relationship between 25(OH)D levels and prevalent chronic kidney disease (CKD), albuminuria and impaired GFR, in a national, population-based cohort of Australian adults (AusDiab Study).</p> <p>Methods</p> <p>10,732 adults ≥25 years of age participating in the baseline survey of the AusDiab study (1999–2000) were included. The GFR was estimated using an enzymatic creatinine assay and the CKD-EPI equation, with CKD defined as eGFR <60 ml/min/1.73 m<sup>2</sup>. Albuminuria was defined as a spot urine albumin to creatinine ratio (ACR) of ≥2.5 mg/mmol for men and ≥3.5 for women. Serum 25(OH)D levels of <50 nmol/L were considered vitamin D deficient. The associations between 25(OH)D level, albuminuria and impaired eGFR were estimated using multivariate regression models.</p> <p>Results</p> <p>30.7% of the study population had a 25(OH)D level <50 nmol/L (95% CI 25.6-35.8). 25(OH)D deficiency was significantly associated with an impaired eGFR in the univariate model (OR 1.52, 95% CI 1.07-2.17), but not in the multivariate model (OR 0.95, 95% CI 0.67-1.35). 25(OH)D deficiency was significantly associated with albuminuria in the univariate (OR 2.05, 95% CI 1.58-2.67) and multivariate models (OR 1.54, 95% CI 1.14-2.07).</p> <p>Conclusions</p> <p>Vitamin D deficiency is common in this population, and 25(OH)D levels of <50 nmol/L were independently associated with albuminuria, but not with impaired eGFR. These associations warrant further exploration in prospective and interventional studies.</p
    corecore