136 research outputs found

    Talent Report: What Workers Want in 2012

    Get PDF
    This report set out to investigate how people view 'impact jobs,' or jobs that provide the opportunity to make social or environmental impact. This survey looked at a statistically-significant national sample of 1,726 individuals: currently-enrolled university students about to enter the workforce, and currently-employed college graduates spanning three generations (Millennials, Generation X, and Baby Boomers). The report examines each group's life goals, job satisfaction, and prioritization for making an impact at work against other key job criteria

    The loops facing the active site of prolyl oligopeptidase are crucial components in substrate gating and specificity

    Get PDF
    Prolyl oligopeptidase (POP) has emerged as a drug target for neurological diseases. A flexible loop structure comprising loop A (res. 189–209) and loop B (res. 577–608) at the domain interface is implicated in substrate entry to the active site. Here we determined kinetic and structural properties of POP with mutations in loop A, loop B, and in two additional flexible loops (the catalytic His loop, propeller Asp/Glu loop). POP lacking loop A proved to be an inefficient enzyme, as did POP with a mutation in loop B (T590C). Both variants displayed an altered substrate preference profile, with reduced ligand binding capacity. Conversely, the T202C mutation increased the flexibility of loop A, enhancing the catalytic efficiency beyond that of the native enzyme. The T590C mutation in loop B increased the preference for shorter peptides, indicating a role in substrate gating. Loop A and the His loop are disordered in the H680A mutant crystal structure, as seen in previous bacterial POP structures, implying coordinated structural dynamics of these loops. Unlike native POP, variants with a malfunctioning loop A were not inhibited by a 17-mer peptide that may bind non-productively to an exosite involving loop A. Biophysical studies suggest a predominantly closed resting state for POP with higher flexibility at the physiological temperature. The flexible loop A, loop B and His loop system at the active site is the main regulator of substrate gating and specificity and represents a new inhibitor target

    Oigopeptidázok regulációs és katalitikus mechanizmusa = Regulatory and catalytic mechanisms of oligopeptidases

    Get PDF
    Az oligopeptidázok csak kisebb peptideket hidrolizálnak. Ennek okát a proliloligopeptidáz (POP) enzimnél vizsgáltuk, amelynek fontos szerepe van a központi idegrendszer működésében. Az általunk meghatározott kristályszerkezet azt mutatta, hogy az enzim egy peptidáz és egy propeller doménből áll, és az utóbbi gátolja a nagyobb szubsztrátoknak az aktív centrumhoz való jutását. Diszulfid keresztkötésekkel és stabilitás vizsgálatokkal kimutattuk, hogy a zárt propeller nem engedheti be a szubsztrátot, az csak a két domén között, azok flexibilitása réven juthat az aktív centrumhoz. Az itt megnyíló kapu azonban kiszűri a fehérjéket. Kimutattuk továbbá, hogy a valproinsav, a depresszió egyik gyógyszere, gátolja az enzim működését. Ugyancsak megállapítottuk, hogy a POP családba tartozó PREPL fehérje, melynek hiánya súlyos betegséget okoz, nem rendelkezik hidrolitikus aktivitással. Egy másik, szintén a POP családba tartozó enzimről, az acilaminoacil peptidázról kimutattuk, hogy a katalízisben résztvevő oxianion kötőhely működését jelentősen károsítja egy a kötőhelyen kívüli aminosav mutációja. Röntgen krisztallográfiával igazoltuk, hogy a mutáció megváltoztatja a kötőhely szerkezetét. Lényeges különbséget találtunk az emlős és egy bakteriális acilaminoacil peptidáz között. Míg az emlős enzim valódi exopeptidáz, acilaminosavat hasít le a peptidlánc végéről, addig a bakteriális enzim endopeptidáz aktivitással is rendelkezik. Ez arra mutat, hogy az enzim a fejlődés során specializálódott. | Oligopeptidases hydrolyze small peptides only. The reason of the limitation was studied using prolyloligopeptidase (POP), which is involved in the function of the central nervous system. As we have shown the enzyme is composed of a peptidase and a propeller domain, the latter preventing the access of the substrate to the active site. Using disulfide cross-linking, molecular dynamics calculations and stability investigations, we have demonstrated that the substrate enters the active site between the domains, thanks to the flexibility of the protein. This gate, however, excludes the protein from the catalytic centre. We have also demonstrated that valproic acid, a drug for treating bipolar depression, inhibits POP. Furthermore, the PREPL protein of the POP family, the lack of which causes serious illness, was shown to be inactive. Acylaminoacyl peptidase, an important member of POP family, has also been investigated. A mutation outside the oxyanion binding site considerably impaired the catalytic activity due to a distortion in the structure of the oxyanion binding site, as demonstrated by X-ray crystallography. A significant difference was observed between the mammalian and a bacterial acylaminoacyl peptidase. While the mammalian enzyme proved to be a true exopeptidase cleaving acylaminoacid from the N-terminus of peptides, the bacterial enzyme also displayed endopeptidase activity, indicating that the enzyme specialized during evolution

    Catalytically distinct states captured in a crystal lattice: the substrate-bound and scavenger states of acylaminoacyl peptidase and their implications for functionality

    Get PDF
    Acylaminoacyl peptidase (AAP) is an oligopeptidase that only cleaves short peptides or protein segments. In the case of AAP fromAeropyrum pernix(ApAAP), previous studies have led to a model in which the clamshell-like opening and closing of the enzyme provides the means of substrate-size selection. The closed form of the enzyme is catalytically active, while opening deactivates the catalytic triad. The crystallographic results presented here show that the open form of ApAAP is indeed functionally disabled. The obtained crystal structures also reveal that the closed form is penetrable to small ligands: inhibitor added to the pre-formed crystal was able to reach the active site of the rigidified protein, which is only possible through the narrow channel of the propeller domain. Molecular-dynamics simulations investigating the structure of the complexes formed with longer peptide substrates showed that their binding within the large crevice of the closed form of ApAAP leaves the enzyme structure unperturbed; however, their accessing the binding site seems more probable when assisted by opening of the enzyme. Thus, the open form of ApAAP corresponds to a scavenger of possible substrates, the actual cleavage of which only takes place if the enzyme is able to re-close.</jats:p

    A genetic study based on PCNA-ubiquitin fusions reveals no requirement for PCNA polyubiquitylation in DNA damage tolerance

    Get PDF
    Post-translational modifications of Proliferating Cell Nuclear Antigen (PCNA) play a key role in regulating the bypass of DNA lesions during DNA replication. PCNA can be monoubiquitylated at lysine 164 by the RAD6-RAD18 ubiquitin ligase complex. Through this modification, PCNA can interact with low fidelity Y family DNA polymerases to promote translesion synthesis. Monoubiquitylated PCNA can be polyubiquitylated on lysine 63 of ubiquitin by a further ubiquitin-conjugating complex. This modification promotes a template switching bypass process in yeast, while its role in higher eukaryotes is less clear. We investigated the function of PCNA ubiquitylation using a PCNAK164R mutant DT40 chicken B lymphoblastoma cell line, which is hypersensitive to DNA damaging agents such as methyl methanesulfonate (MMS), cisplatin or ultraviolet radiation (UV) due to the loss of PCNA modifications. In the PCNAK164R mutant we also detected cell cycle arrest following UV treatment, a reduced rate of damage bypass through translesion DNA synthesis on synthetic UV photoproducts, and an increased rate of genomic mutagenesis following MMS treatment. PCNA-ubiquitin fusion proteins have been reported to mimic endogenous PCNA ubiquitylation. We found that the stable expression of a PCNAK164R-ubiquitin fusion protein fully or partially rescued the observed defects of the PCNAK164R mutant. The expression of a PCNAK164R-ubiquitinK63R fusion protein, on which the formation of lysine 63-linked polyubiquitin chains is not possible, similarly rescued the cell cycle arrest, DNA damage sensitivity, reduction of translesion synthesis and increase of MMS-induced genomic mutagenesis. Template switching bypass was not affected by the genetic elimination of PCNA polyubiquitylation, but it was reduced in the absence of the recombination proteins BRCA1 or XRCC3. Our study found no requirement for PCNA polyubiquitylation to protect cells from replication-stalling DNA damage. © 2017 Elsevier B.V

    A self-compartmentalizing hexamer serine protease from Pyrococcus Horikoshii: Substrate selection achieved through multimerization

    Get PDF
    Oligopeptidases impose a size limitation on their substrates, the mechanism of which has long been in debate. Here we present the structure of a hexameric serine protease, an oligopeptidase from Pyrococcus horikoshii (PhAAP), revealing a complex, self-compartmentalized inner space, where substrates may access the monomer active sites passing through a double-gated "check-in" system: first passing through a pore on the hexamer surface, then turning to enter through an even smaller opening at the monomers' domain-interface. This substrate screening strategy is unique within the family. We found that among oligopeptidases a member of catalytic apparatus is positioned near an amylogenic beta-edge, which needs to be protected to prevent aggregation and found different strategies applied to such end. We propose that self-assembly within the family results in characteristically different substrate selection mechanisms coupled to different multimerization states

    Protein processing characterized by a gel-free proteomics approach

    Get PDF
    We describe a method for the specific isolation of representative N-terminal peptides of proteins and their proteolytic fragments. Their isolation is based on a gel-free, peptidecentric proteomics approach using the principle of diagonal chromatography. We will indicate that the introduction of an altered chemical property to internal peptides holding a free α-N-terminus results in altered column retention of these peptides, thereby enabling the isolation and further characterization by mass spectrometry of N-terminal peptides. Besides pointing to changes in protein expression levels when performing such proteome surveys in a differential modus, protease specificity and substrate repertoires can be allocated since both are specified by neo-N-termini generated after a protease cleavage event. As such, our gel-free proteomics technology is widely applicable and amenable for a variety of proteome-driven protease degradomics research
    • …
    corecore