658 research outputs found

    A simply connected surface of general type with p_g=0 and K^2=2

    Full text link
    In this paper we construct a simply connected, minimal, complex surface of general type with p_g=0 and K^2=2 using a rational blow-down surgery and Q-Gorenstein smoothing theory.Comment: 19 pages, 6 figures. To appear in Inventiones Mathematica

    A psychoanalytic concept illustrated: Will, must, may, can — revisiting the survival function of primitive omnipotence

    Get PDF
    The author explores the linear thread connecting the theory of Freud and Klein, in terms of the central significance of the duality of the life and death instinct and the capacity of the ego to tolerate contact with internal and external reality. Theoretical questions raised by later authors, informed by clinical work with children who have suffered deprivation and trauma in infancy, are then considered. Theoretical ideas are illustrated with reference to observational material of a little boy who suffered deprivation and trauma in infancy. He was first observed in the middle of his first year of life while he was living in foster care, and then later at the age of two years and three months, when he had been living with his adoptive parents for more than a year

    Modeling the Halpha line emission around classical T Tauri stars using magnetospheric accretion and disk wind models

    Full text link
    Spectral observations of classical T Tauri stars show a wide range of line profiles, many of which reveal signs of matter inflow and outflow. Halpha is the most commonly observed line profile due to its intensity, and it is highly dependent on the characteristics of the surrounding environment of these stars. Our aim is to analyze how the Halpha line profile is affected by the various parameters of our model which contains both the magnetospheric and disk wind contributions to the Halpha flux. We used a dipolar axisymmetric stellar magnetic field to model the stellar magnetosphere and a modified Blandford & Payne model was used in our disk wind region. A three-level atom with continuum was used to calculate the required Hydrogen level populations. We use the Sobolev approximation and a ray-by-ray method to calculate the integrated line profile. Through an extensive study of the model parameter space, we have investigated the contribution of many of the model parameters on the calculated line profiles. Our results show that the Halpha line is strongly dependent on the densities and temperatures inside the magnetosphere and the disk wind region. The bulk of the flux comes, most of the time, from the magnetospheric component for standard classical T Tauri stars parameters, but the disk wind contribution becomes more important as the mass accretion rate, the temperatures and densities inside the disk wind increase. We have also found that most of the disk wind contribution to the Halpha line is emitted at the innermost region of the disk wind. Models that take into consideration both inflow and outflow of matter are a necessity to fully understand and describe classical T Tauri stars.Comment: 15 pages, 9 figures, accepted for publication in Astronomy & Astrophysics. Revised version with English correction

    Thermal activation between Landau levels in the organic superconductor β\beta''-(BEDT-TTF)2_{2}SF5_{5}CH2_{2}CF2_{2}SO3_{3}

    Get PDF
    We show that Shubnikov-de Haas oscillations in the interlayer resistivity of the organic superconductor β\beta''-(BEDT-TTF)2_{2}SF5_{5} CH2_{2}CF2_{2}SO3_{3} become very pronounced in magnetic fields \sim~60~T. The conductivity minima exhibit thermally-activated behaviour that can be explained simply by the presence of a Landau gap, with the quasi-one-dimensional Fermi surface sheets contributing negligibly to the conductivity. This observation, together with complete suppression of chemical potential oscillations, is consistent with an incommensurate nesting instability of the quasi-one-dimensional sheets.Comment: 6 pages, 4 figure

    Single-stranded DNA catenation mediated by human EVL and a type I topoisomerase

    Get PDF
    The human Ena/Vasp-like (EVL) protein is considered to be a bifunctional protein, involved in both actin remodeling and homologous recombination. In the present study, we found that human EVL forms heat-stable multimers of circular single-stranded DNA (ssDNA) molecules in the presence of a type I topoisomerase in vitro. An electron microscopic analysis revealed that the heat-stable ssDNA multimers formed by EVL and topoisomerase were ssDNA catemers. The ssDNA catenation did not occur when either EVL or topoisomerase was omitted from the reaction mixture. A deletion analysis revealed that the ssDNA catenation completely depended on the annealing activity of EVL. Human EVL was captured from a human cell extract by TOPO IIIα-conjugated beads, and the interaction between EVL and TOPO IIIα was confirmed by a surface plasmon resonance analysis. Purified TOPO IIIα catalyzed the ssDNA catenation with EVL as efficiently as the Escherichia coli topoisomerase I. Since the ssDNA cutting and rejoining reactions, which are the sub-steps of ssDNA catenation, may be an essential process in homologous recombination, EVL and TOPO IIIα may function in the processing of DNA intermediates formed during homologous recombination

    Analysis of MRE11's function in the 5′→3′ processing of DNA double-strand breaks

    Get PDF
    The resection of DNA double-strand breaks (DSBs) into 3′ single-strand tails is the initiating step of homology-dependent repair pathways. A key player in this process is the MRE11-RAD50-NBS1 complex, but its contribution to and mechanistic role in resection are not well understood. In this study, we took advantage of the Xenopus egg extract system to address these questions. We found that depletion of MRE11 caused a dramatic inhibition of 5′-resection, even for the first nucleotide at the 5′-end. Depletion of Xenopus CtIP also inhibited 5′-strand resection, but this inhibition could be alleviated by excess MRN. Both MRE11 and CtIP could be bypassed by a DNA that carried a 3′-ss-tail. Finally, using purified proteins, we found that MRN could stimulate both the WRN-DNA2-RPA pathway and the EXO1 pathway of resection. These findings provide important insights into the function of MRE11 in 5′-strand resection

    Identification of the Xenopus DNA2 protein as a major nuclease for the 5′→3′ strand-specific processing of DNA ends

    Get PDF
    The first step of homology-dependent DNA double-strand break (DSB) repair is the 5′ strand-specific processing of DNA ends to generate 3′ single-strand tails. Despite extensive effort, the nuclease(s) that is directly responsible for the resection of 5′ strands in eukaryotic cells remains elusive. Using nucleoplasmic extracts (NPE) derived from the eggs of Xenopus laevis as the model system, we have found that DNA processing consists of at least two steps: an ATP-dependent unwinding of ends and an ATP-independent 5′→3′ degradation of single-strand tails. The unwinding step is catalyzed by DNA helicases, the major one of which is the Xenopus Werner syndrome protein (xWRN), a member of the RecQ helicase family. In this study, we report the purification and identification of the Xenopus DNA2 (xDNA2) as one of the nucleases responsible for the 5′→3′ degradation of single-strand tails. Immunodepletion of xDNA2 resulted in a significant reduction in end processing and homology-dependent DSB repair. These results provide strong evidence that xDNA2 is a major nuclease for the resection of DNA ends for homology-dependent DSB repair in eukaryotes

    Mechanistic analysis of Xenopus EXO1's function in 5′-strand resection at DNA double-strand breaks

    Get PDF
    The processing of DNA double-strand breaks (DSBs) into 3′ single-stranded tails is the first step of homology-dependent DSB repair. A key player in this process is the highly conserved eukaryotic exonuclease 1 (EXO1), yet its precise mechanism of action has not been rigorously determined. To address this issue, we reconstituted 5′-strand resection in cytosol derived from unfertilized interphase eggs of the frog Xenopus laevis. Xenopus EXO1 (xEXO1) was found to display strong 5′→3′ dsDNA exonuclease activity but no significant ssDNA exonuclease activity. Depletion of xEXO1 caused significant inhibition of 5′ strand resection. Co-depletion of xEXO1 and Xenopus DNA2 (xDNA2) showed that these two nucleases act in parallel pathways and by distinct mechanisms. While xDNA2 acts on ssDNA unwound mainly by the Xenopus Werner syndrome protein (xWRN), xEXO1 acts directly on dsDNA. Furthermore, xEXO1 and xWRN are required for both the initiation stage and the extension stage of resection. These results reveal important novel information on the mechanism of 5′-strand resection in eukaryotes

    Extensive DNA End Processing by Exo1 and Sgs1 Inhibits Break-Induced Replication

    Get PDF
    Homology-dependent repair of DNA double-strand breaks (DSBs) by gene conversion involves short tracts of DNA synthesis and limited loss of heterozygosity (LOH). For DSBs that present only one end, repair occurs by invasion into a homologous sequence followed by replication to the end of the chromosome resulting in extensive LOH, a process called break-induced replication (BIR). We developed a BIR assay in Saccharomyces cerevisiae consisting of a plasmid with a telomere seeding sequence separated from sequence homologous to chromosome III by an I-SceI endonuclease recognition site. Following cleavage of the plasmid by I-SceI in vivo, de novo telomere synthesis occurs at one end of the vector, and the other end invades at the homologous sequence on chromosome III and initiates replication to the end of the chromosome to generate a stable chromosome fragment (CF). BIR was infrequent in wild-type cells due to degradation of the linearized vector. However, in the exo1Δ sgs1Δ mutant, which is defective in the 5′-3′ resection of DSBs, the frequency of BIR was increased by 39-fold. Extension of the invading end of the plasmid was detected by physical analysis two hours after induction of the I-SceI endonuclease in the wild-type exo1Δ, sgs1Δ, and exo1Δ sgs1Δ mutants, but fully repaired products were only visible in the exo1Δ sgs1Δ mutant. The inhibitory effect of resection was less in a plasmid-chromosome gene conversion assay, compared to BIR, and products were detected by physical assay in the wild-type strain. The rare chromosome rearrangements due to BIR template switching at repeated sequences were increased in the exo1Δ sgs1Δ mutant, suggesting that reduced resection can decrease the fidelity of homologous recombination
    corecore