532 research outputs found

    Modeling the Halpha line emission around classical T Tauri stars using magnetospheric accretion and disk wind models

    Full text link
    Spectral observations of classical T Tauri stars show a wide range of line profiles, many of which reveal signs of matter inflow and outflow. Halpha is the most commonly observed line profile due to its intensity, and it is highly dependent on the characteristics of the surrounding environment of these stars. Our aim is to analyze how the Halpha line profile is affected by the various parameters of our model which contains both the magnetospheric and disk wind contributions to the Halpha flux. We used a dipolar axisymmetric stellar magnetic field to model the stellar magnetosphere and a modified Blandford & Payne model was used in our disk wind region. A three-level atom with continuum was used to calculate the required Hydrogen level populations. We use the Sobolev approximation and a ray-by-ray method to calculate the integrated line profile. Through an extensive study of the model parameter space, we have investigated the contribution of many of the model parameters on the calculated line profiles. Our results show that the Halpha line is strongly dependent on the densities and temperatures inside the magnetosphere and the disk wind region. The bulk of the flux comes, most of the time, from the magnetospheric component for standard classical T Tauri stars parameters, but the disk wind contribution becomes more important as the mass accretion rate, the temperatures and densities inside the disk wind increase. We have also found that most of the disk wind contribution to the Halpha line is emitted at the innermost region of the disk wind. Models that take into consideration both inflow and outflow of matter are a necessity to fully understand and describe classical T Tauri stars.Comment: 15 pages, 9 figures, accepted for publication in Astronomy & Astrophysics. Revised version with English correction

    Thermal activation between Landau levels in the organic superconductor β\beta''-(BEDT-TTF)2_{2}SF5_{5}CH2_{2}CF2_{2}SO3_{3}

    Get PDF
    We show that Shubnikov-de Haas oscillations in the interlayer resistivity of the organic superconductor β\beta''-(BEDT-TTF)2_{2}SF5_{5} CH2_{2}CF2_{2}SO3_{3} become very pronounced in magnetic fields \sim~60~T. The conductivity minima exhibit thermally-activated behaviour that can be explained simply by the presence of a Landau gap, with the quasi-one-dimensional Fermi surface sheets contributing negligibly to the conductivity. This observation, together with complete suppression of chemical potential oscillations, is consistent with an incommensurate nesting instability of the quasi-one-dimensional sheets.Comment: 6 pages, 4 figure

    Inhomogeneous Superconductivity in Condensed Matter and QCD

    Full text link
    Inhomogeneous superconductivity arises when the species participating in the pairing phenomenon have different Fermi surfaces with a large enough separation. In these conditions it could be more favorable for each of the pairing fermions to stay close to its Fermi surface and, differently from the usual BCS state, for the Cooper pair to have a non zero total momentum. For this reason in this state the gap varies in space, the ground state is inhomogeneous and a crystalline structure might be formed. This situation was considered for the first time by Fulde, Ferrell, Larkin and Ovchinnikov, and the corresponding state is called LOFF. The spontaneous breaking of the space symmetries in the vacuum state is a characteristic feature of this phase and is associated to the presence of long wave-length excitations of zero mass. The situation described here is of interest both in solid state and in elementary particle physics, in particular in Quantum Chromo-Dynamics at high density and small temperature. In this review we present the theoretical approach to the LOFF state and its phenomenological applications using the language of the effective field theories.Comment: RevTex, 83 pages, 26 figures. Submitted to Review of Modern Physic

    Arginine deprivation alters microglia polarity and synergises with radiation to eradicate non arginine auxotrophic glioblastoma tumors

    Get PDF
    New approaches for the management of glioblastoma (GBM) are an urgent and unmet clinical need. Here, we illustrate that the efficacy of radiotherapy for GBM is strikingly potentiated by concomitant therapy with the arginine depleting agent ADI-PEG20 in a non-arginine auxotrophic cellular background (Arginine Succinate Synthetase 1 positive). Moreover, this combination led to durable and complete radiological and pathological response with extended disease-free survival in an orthotopic immune competent model of GBM with no significant toxicity. ADI-PEG20 not only enhances the cellular sensitivity of Arginine succinate synthetase 1 positive GBM to ionising radiation by elevated production of nitric oxide (NO) and hence generation of cytotoxic peroxynitrites, but also promotes glioma-associated macrophages/microglia infiltration into tumors and turns their classical anti-inflammatory (pro-tumor) phenotype into a pro-inflammatory (anti-tumor) phenotype. Our results provide an effective, well-tolerated and simple strategy to improve GBM treatment which merits consideration for early evaluation in clinical trials

    Air Travel and Venous Thromboembolism: A Systematic Review

    Get PDF
    CONTEXT: Despite multiple attempts to document and quantify the danger of venous thromboembolism (VTE) following prolonged travel, there is still uncertainty about the magnitude of risk and what can be done to lower it. OBJECTIVES: To review the methodologic strength of the literature, estimate the risk of travel-related VTE, evaluate the efficacy of preventive treatments, and develop evidence-based recommendations for practice. DATA SOURCES: Studies identified from MEDLINE from 1966 through December 2005, supplemented by a review of the Cochrane Central Registry of Controlled Trials, the Database of Abstracts of Reviews of Effects, and relevant bibliographies. STUDY SELECTION: We included all clinical studies that either reported primary data concerning travel as a risk factor for VTE or tested preventive measures for travel-related VTE. DATA EXTRACTION AND ANALYSIS: Two reviewers reviewed each study independently to assess inclusion criteria, classify research design, and rate methodologic features. The effect of methodologic differences, VTE risk, and travel duration on VTE rate was evaluated using a logistic regression model. DATA SYNTHESIS: Twenty-four published reports, totaling 25 studies, met inclusion criteria (6 case-control studies, 10 cohort studies, and 9 randomized controlled trials). Method of screening for VTE [screening ultrasound compared to usual clinical care, odds ratio (OR) 390], outcome measure [all VTE compared to pulmonary embolism (PE) only, OR 21], duration of travel (<6 hours compared to 6–8 hours, OR 0.011), and clinical risk (“higher” risk travelers compared to “lower,” OR 3.6) were significantly related to VTE rate. Clinical VTE after prolonged travel is rare [27 PE per million flights diagnosed through usual clinical care, 0.05% symptomatic deep venous thrombosis (DVT) diagnosed through screening ultrasounds], but asymptomatic thrombi of uncertain clinical significance are more common. Graduated compression stockings prevented travel-related VTE (P < 0.05 in 4 of 6 studies), aspirin did not, and low-molecular-weight heparin (LMWH) showed a trend toward efficacy in one study. CONCLUSIONS: All travelers, regardless of VTE risk, should avoid dehydration and frequently exercise leg muscles. Travelers on a flight of less than 6 hours and those with no known risk factors for VTE, regardless of the duration of the flight, do not need DVT prophylaxis. Travelers with 1 or more risk factors for VTE should consider graduated compression stockings and/or LMWH for flights longer than 6 hours

    Systematic mechanical assessment of consolidants for canvas reinforcement under controlled environment

    Get PDF
    In conservation, adhesives are commonly used for the consolidation of canvases, yet their impact upon the canvas longevity has raised some concerns amongst conservators. As such, this study presents a testing protocol developed to assess the performance of commonly-used adhesives (natural animal glue and synthetic Beva® 371) and a newly developed nanocellulose consolidant, nanofibrillated nanocellulose (CNF). This includes their effect on the visual appearance, consolidation, and response of the mechanical properties of the treated canvases to programmed changes in relative humidity (RH). Scanning electron microscopy (SEM) images of animal glue- and Beva® 371-treated canvases revealed the presence of adhesive and consolidant on and in-between cotton fibres. The consolidants form bridges linking and connecting the cotton fibres and holding them together, whereas the CNF treatment, formed a visible continuous and dense surface coating. None of the treatments induced any discernible colour change. Controlled environment mechanical testing was performed in two ways: by applying a linearly increasing static force at fixed RH (Young’s modulus) and by applying a dynamic force together with a programmed RH cycling between 20 and 80% (RH dependent viscoelastic properties). CNF gave a higher value of Young’s modulus than either of the two commonly-used materials. Measurements at different values of RH (20 and 80%) demonstrated for all the treated canvases that at the lower value (RH 20%) Young’s modulus values were higher than at the higher value (RH 80%). Besides, the dynamic mode showed that the rate of response in all cases was rapid and reversible and that the nanofibrillated cellulose treated sample showed the highest variation in storage (or elastic) modulus measured at the end of RH plateaux (20 and 80% RH). Thus CNF appears to be a promising material given its higher mechanical performance. The protocol developed in this study has enabled us to examine and compare candidate materials for the consolidation of canvases systematically, using testing parameters that remained relevant to the field of canvas conservation

    Relationship of an hRAD54 gene polymorphism (2290 C/T) in an Ecuadorian population with chronic myelogenous leukemia

    Get PDF
    The hRAD54 gene is a key member of the RAD52 epistasis group involved in repair of double-strand breaks (DSB) by homologous recombination (HR). Thus, alterations of the normal function of these genes could generate genetic instability, shifting the normal process of the cell cycle, leading the cells to develop into cancer. In this work we analyzed exon 18 of the hRAD54 gene, which has been previously reported by our group to carry a silent polymorphism, 2290 C/T (Ala730Ala), associated to meningiomas. We performed a PCR-SSCP method to detect the polymorphism in 239 samples including leukemia and normal control population. The results revealed that the 2290 C/T polymorphism has frequencies of 0.1 for the leukemia and 0.1 for the control group. These frequencies show no statistical differences. Additionally, we dissected the leukemia group in chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL) to evaluate the polymorphism. The frequencies found in these subgroups were 0.14 for CML and 0.05 for ALL. We found statistically significant differences between CML patients and the control group (p < 0.05) but we did not find significant differences between ALL and the control group (p > 0.05). These results suggest a possible link between the 2290 C/T polymorphism of the hRAD54 gene and CML

    CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering

    Get PDF
    Prokaryotic type II CRISPR-Cas systems can be adapted to enable targeted genome modifications across a range of eukaryotes.1–7. Here we engineer this system to enable RNA-guided genome regulation in human cells by tethering transcriptional activation domains either directly to a nuclease-null Cas9 protein or to an aptamer-modified single guide RNA (sgRNA). Using this functionality we developed a novel transcriptional activation–based assay to determine the landscape of off-target binding of sgRNA:Cas9 complexes and compared it with the off-target activity of transcription activator–like (TAL) effector proteins8, 9. Our results reveal that specificity profiles are sgRNA dependent, and that sgRNA:Cas9 complexes and 18-mer TAL effector proteins can potentially tolerate 1–3 and 1–2 target mismatches, respectively. By engineering a requirement for cooperativity through offset nicking for genome editing or through multiple synergistic sgRNAs for robust transcriptional activation, we suggest methods to mitigate off-target phenomena. Our results expand the versatility of the sgRNA:Cas9 tool and highlight the critical need to engineer improved specificity

    Chromatin organization revealed by nanostructure of irradiation induced gamma H2AX, 53BP1 and Rad51 foci

    Get PDF
    The spatial distribution of DSB repair factors gamma H2AX, 53BP1 and Rad51 in ionizing radiation induced foci (IRIF) in HeLa cells using super resolution STED nanoscopy after low and high linear energy transfer (LET) irradiation was investigated. 53BP1 and gamma H2AX form IRIF with same mean size of (540 +/- 40) nm after high LET irradiation while the size after low LET irradiation is significantly smaller. The IRIF of both repair factors show nanostructures with partial anti-correlation. These structures are related to domains formed within the chromatin territories marked by gamma H2AX while 53BP1 is mainly situated in the perichromatin region. The nanostructures have a mean size of (129 +/- 6) nm and are found to be irrespective of the applied LET and the labelled damage marker. In contrast, Rad51 shows no nanostructure and a mean size of (143 +/- 13) nm independent of LET. Although Rad51 is surrounded by 53BP1 it strongly anti-correlates meaning an exclusion of 53BP1 next to DSB when decision for homologous DSB repair happened

    B Cell Depletion Reduces the Number of Autoreactive T Helper Cells and Prevents Glucose-6-Phosphate Isomerase-Induced Arthritis

    Get PDF
    The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI). The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th) cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells
    corecore