16 research outputs found

    Concurrent MEK2 Mutation and BRAF Amplification Confer Resistance to BRAF and MEK Inhibitors in Melanoma

    Get PDF
    SummaryAlthough BRAF and MEK inhibitors have proven clinical benefits in melanoma, most patients develop resistance. We report a de novo MEK2-Q60P mutation and BRAF gain in a melanoma from a patient who progressed on the MEK inhibitor trametinib and did not respond to the BRAF inhibitor dabrafenib. We also identified the same MEK2-Q60P mutation along with BRAF amplification in a xenograft tumor derived from a second melanoma patient resistant to the combination of dabrafenib and trametinib. Melanoma cells chronically exposed to trametinib acquired concurrent MEK2-Q60P mutation and BRAF-V600E amplification, which conferred resistance to MEK and BRAF inhibitors. The resistant cells had sustained MAPK activation and persistent phosphorylation of S6K. A triple combination of dabrafenib, trametinib, and the PI3K/mTOR inhibitor GSK2126458 led to sustained tumor growth inhibition. Hence, concurrent genetic events that sustain MAPK signaling can underlie resistance to both BRAF and MEK inhibitors, requiring novel therapeutic strategies to overcome it

    Abstracts from the 3rd Conference on Aneuploidy and Cancer: Clinical and Experimental Aspects

    Get PDF

    An integrated expression atlas of miRNAs and their promoters in human and mouse

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Divergence of Eukaryotic Secretory Components: the Candida albicans Homolog of the Saccharomyces cerevisiae Sec20 Protein Is N Terminally Truncated, and Its Levels Determine Antifungal Drug Resistance and Growth

    No full text
    Sec20p is a component of the yeast Saccharomyces cerevisiae secretory pathway that does not have a close homolog in higher eukaryotic cells. To verify the function of Sec20p in other fungal species, we characterized the gene encoding a Sec20p homolog in the human fungal pathogen Candida albicans. The deduced protein has 27% identity with, but is missing about 100 N-terminal residues compared to S. cerevisiae Sec20p, which is part of the cytoplasmic tail interacting with the cytoplasmic protein Tip20p. Because a strain lacking both C. albicans SEC20 alleles could not be constructed, we placed SEC20 under transcriptional control of two regulatable promoters, MET3p and PCK1p. Repression of SEC20 expression in these strains prevented (MET3p-SEC20 allele) or retarded (PCK1p-SEC20 allele) growth and led to the appearance of extensive intracellular membranes, which frequently formed stacks. Reduced SEC20 expression in the PCK1p-SEC20 strain did not affect morphogenesis but led to a series of hypersensitivity phenotypes including supersensitivity to aminoglycoside antibiotics, to nystatin, to sodium dodecyl sulfate, and to cell wall inhibitors. These results demonstrate the occurrence and function of Sec20p in a fungal species other than S. cerevisiae, but the lack of the N-terminal domain and the apparent absence of a close TIP20 homolog in the C. albicans genome also indicate a considerable diversity in mechanisms of retrograde vesicle traffic in eukaryotes

    Abstracts from the 3rd Conference on Aneuploidy and Cancer: Clinical and Experimental Aspects

    No full text
    corecore