13 research outputs found

    The DiskMass Survey. VIII. On the Relationship Between Disk Stability and Star Formation

    Full text link
    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q_RW), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of sigma_z/sigma_R = 0.51^{+0.36}_{-0.25} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q_RW = 2.0 +/- 0.9. We also find that the disk-averaged star-formation-rate surface density (Sigma-dot_e,*) is correlated with the disk-averaged gas and stellar mass surface densities (Sigma_e,g and Sigma_e,*) and anti-correlated with Q_RW. We show that an anti-correlation between Sigma-dot_e,* and Q_RW can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Sigma-dot_e,* is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Sigma-dot_e,*/Sigma_e,g/sqrt(Sigma_e,*). Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.Comment: Accepted for publication in ApJ. 15 pages, 6 figures, 2 tables. An electronic version of Table 1 is available by request, or at http://www.astro.rug.nl/~westfall/research/dmVIII_table1.tx

    Nuclear Rings in Galaxies---A Kinematic Perspective

    Get PDF
    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v^2/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.Comment: 19 pages, 7 figures, accepted for publication into Ap

    The Link Between Light and Mass in Late-type Spiral Galaxy Disks

    Get PDF
    We present the correlation between the extrapolated central disk surface brightness (mu) and extrapolated central surface mass density (Sigma) for galaxies in the DiskMass sample. This mu-Sigma-relation has a small scatter of 30% at the high-surface-brightness (HSB) end. At the low surface brightness (LSB) end, galaxies fall above the mu-Sigma-relation, which we attribute to their higher dark matter content. After correcting for the dark matter, as well as for the contribution of gas and the effects of radial gradients in the disk, the LSB end falls back on the linear mu-Sigma-relation. The resulting scatter about the corrected mu-Sigma-relation is 25% at the HSB end, and about 50% at the LSB end. The intrinsic scatter in the mu-Sigma-relation is estimated to be 10% to 20%. Thus, if the surface brightness is known, the stellar surface mass density is known to within 10-20% (random error). Assuming disks have an exponential vertical distribution of mass, the average (M_L)_K is 0.24 Msun/Lsun, with an intrinsic scatter around the mean of at most 0.05 Msun/Lsun. This value for (M/L)_K is 20% smaller than we found in Martinsson et al., mainly due to the correction for dark matter applied here. This small scatter means that among the galaxies in our sample variations in scale height, vertical density profile shape, and/or the ratio of vertical over radial velocity dispersion must be small.Comment: Accepted for publication in ApJ Letter

    The DiskMass Survey. IV. The Dark-Matter-Dominated Galaxy UGC 463

    Get PDF
    We present a detailed and unique mass budget for the high-surface-brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (h_R) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2 h_R. Assuming a constant scale height (h_z, calculated via an empirical oblateness relation), we calculate dynamical disk mass surface densities from stellar kinematics, which provide vertical velocity dispersions after correcting for the shape of the stellar velocity ellipsoid (measured to have sigma_theta/sigma_R=1.04 +/- 0.22 and sigma_z/sigma_R=0.48 +/- 0.09). We isolate the stellar mass surface density by accounting for all gas mass components and find an average K-band mass-to-light ratio of 0.22 +/- 0.09 (ran) ^{+0.16}_{-0.15} (sys) M_{sun}/L_{sun}^{K}; Zibetti et al. and Bell et al. predict, respectively, 0.56 and 3.6 times our dynamical value based on stellar-population-synthesis modeling. The baryonic matter is submaximal by a factor of ~3 in mass and the baryonic-to-total circular-speed ratio is 0.61^{+0.07}_{-0.09} (ran) ^{+0.12}_{-0.18} (sys) at 2.2 h_R; however, the disk is globally stable with a multi-component stability that decreases asymptotically with radius to Q~2. We directly calculate the circular speed of the DM halo by subtracting the baryonic contribution to the total circular speed; the result is equally well described by either a Navarro-Frenk-White halo or a pseudo-isothermal sphere. The volume density is dominated by DM at heights of |z|>1.6 h_z for radii of R > h_R. As is shown in follow-up papers, UGC 463 is just one example among nearly all galaxies we have observed that contradict the hypothesis that high-surface-brightness spiral galaxies have maximal disks.Comment: accepted for publication in ApJ (36 pages, 20 figures, 9 tables

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29
    corecore