94 research outputs found

    Multi stress system: Microplastics in freshwater and their effects on host microbiota

    Get PDF
    Microplastics are persistent and complex contaminants that have recently been found in freshwater systems, raising concerns about their presence in aquatic organisms. Plastics tend to be seen as an inert material; however, it is not well known if exposure to plastics for a prolonged time, in combination with organic chemicals, causes organism mortality. Ingestion of microplastics in combination with another pollutant may affect a host organism's fitness by altering the host microbiome. In this study, we investigated how microplastics interact with other pollutants in this multi-stress system, and whether they have a synergistic impact on the mortality of an aquatic organism and its microbiome. We used wild water boatmen Hemiptera (Corixidae) found at lake Erken located in east-central Sweden in a fully factorial two-way microcosm experiment designed with polystyrene microspheres and a commonly used detergent. The microplastic-detergent interaction is manifested as a significant increase in mortality compared to the other treatments at 48 h of exposure. The diversity of the microbial communities in the water was significantly affected by the combined treatment of microplastics and the detergent while the microbial communities in the host were affected by the treatments with microplastics and the detergent alone. Changes in relative abundance in Gammaproteobacteria (family Enterobacteriaceae), were observed in the perturbed treatments mostly associated with the presence of the detergent. This confirms that microplastics can interact with detergents having toxic effects on wild water boatmen. Furthermore, microplastics may impact wild organisms via changes in their microbial communities

    The Stressful Effects of Microplastics Associated With Chromium (VI) on the Microbiota of Daphnia Magna

    Get PDF
    Contamination by microplastics (particles < 1 mm) is a growing and alarming environmental problem in freshwater systems. Evidence suggests that industrial effluents could be one of the critical point sources of microplastics and other pollutants, and their interaction can cause organismal stress and affect host and environmental microbial communities. We tested the individual and combined effects of microplastics and other pollutants on host survival and host associated (commensal) bacterial diversity. We exposed Daphnia magna to 1 mu m microplastic beads with a concentration of approximately 1820 particles/ml and chromium (VI) simultaneously with treatments of 2 and 5 ppm for 72 h. DNA extraction was done to amplify and sequence the ribosomal Bacterial 16S from both the water and the Daphnia. Daphnia experienced low mortality in treatments microplastics (13.3%) and 2 ppm chromium VI (30%) individually. However, the combination of microplastics and 2 ppm chromium (VI) increased the mortality to 74.4%. In the treatments with 5 ppm of chromium (VI) mortality rose to 100% after 30 h of exposure. Microbial diversity changed in response to microplastics, chromium (VI), and both combined exposure. Microplastics and toxic metals can cause dysbiosis of freshwater environmental microbiota, whole host microbiota, and host survival. This work stresses the importance to assess how pollutants' individual and joint effects could affect organisms including their microbiome

    Measuring Individual-Level Resource Specialization

    Get PDF
    Many apparently generalized species are in fact composed of individual specialists that use a small subset of the population’s resource distribution. Niche variation is usually established by testing the null hypothesis that individuals draw from a common resource distribution. This approach encourages a publication bias in which negative results are rarely reported, and obscures variation in the degree of individual specialization, limiting our ability to carry out comparative studies of the causes or consequences of niche variation. To facilitate studies of the degree of individual specialization, this paper outlines four quantitative indices of intrapopulation variation in resource use. Traditionally, such variation has been measured by partitioning the population’s total niche width into within- and between-individual, sex, or phenotype components. We suggest two alternative measures that quantify the mean resource overlap between an individual and its population, and we discuss the advantages and disadvantages of all four measures. The utility of all indices depends on the quality of the empirical data. If resources are measured in a coarse-grained manner, individuals may falsely appear generalized. Alternatively, specialization may be overestimated by cross-sectional sampling schemes where diet variation can reflect a patchy environment. Isotope ratios, parasites, or diet–morphology correlations can complement cross-sectional data to establish temporal consistency of individual specialization

    Direct Measurement of Amorphous Solubility

    Get PDF
    Amorphous materials exhibit distinct physicochemical properties compared to their respective crystalline counterparts. One of these properties, the increased solubility of amorphous materials, is exploited in the pharmaceutical industry as a way of increasing bioavailability of poorly water-soluble drugs. Despite the increasing interest in drug amorphization, the analytical physicochemical toolbox is lacking a reliable method for direct amorphous solubility assessment. Here, we show, for the first time, a direct approach to measure the amorphous solubility of diverse drugs by combining optics with fluidics, the single particle analysis (SPA) method. Moreover, a comparison was made to a theoretical estimation based on thermal analysis and to a standardized supersaturation and precipitation method. We have found a good level of agreement between the three methods. Importantly, the SPA method allowed for the first experimental measurement of the amorphous solubility for griseofulvin, a fast crystallizing drug, without the use of a crystallization inhibitor. In conclusion, the SPA approach enables rapid and straightforward determination of the supersaturation potential for amorphous materials of less than 0.1 mg, which could prove highly beneficial in the fields of materials science, analytical chemistry, physical chemistry, food science, pharmaceutical science, and others.Peer reviewe

    Fast imaging-based single particle analysis method for solubility determination

    Get PDF
    The solubility and dissolution rates of chemical compounds are crucial properties in several fields of industry and research. However, accurate, rapid and green methods for their measurement, which only consume micrograms of compound, are lacking. Here, the unique approach of non-specific, image-based single particle analysis (SPA) for solubility testing is directly compared to and thus validated on the mid-solubility range with the current gold standard shake-flask method with UV-Vis spectroscopy employed for determining sample concentrations. Five biologically active compounds representing a range of physicochemical properties including pK(a) and logP were analyzed with both methods. The comparison of SPA and the shake-flask (SF) analysis shows excellent linear correlation (R-2 = 0.99). Higher variability of the SPA method is attributed to variability between the properties of individual particles, which cannot be detected with traditional methods. Due to the similar average solubility values compared to those produced with SF, it is concluded that the SPA method has great potential as an analytical tool for small-scale solubility studies. It also has several practical advantages over the current gold standard shake-flask method, such as speed, low consumables consumption, and no requirement for prior knowledge of compound chemistry.Peer reviewe

    Opportunities to reduce nutrient inputs to the Baltic Sea by improving manure use efficiency in agriculture

    Get PDF
    While progress has been made in reducing external nutrient inputs to the Baltic Sea, further actions are needed to meet the goals of the Baltic Sea Action Plan (BSAP), especially for the Baltic Proper, Gulf of Finland, and Gulf of Riga sub-basins. We used the net anthropogenic nitrogen and phosphorus inputs (NANI and NAPI, respectively) nutrient accounting approach to construct three scenarios of reduced NANI-NAPI. Reductions assumed that manure nutrients were redistributed from areas with intense animal production to areas that focus on crop production and would otherwise import synthetic and mineral fertilizers. We also used the Simple as Necessary Baltic Long Term Large Scale (SANBALTS) model to compare eutrophication conditions for the scenarios to current and BSAP-target conditions. The scenarios suggest that reducing NANI-NAPI by redistributing manure nutrients, together with improving agronomic practices, could meet 54-82% of the N reductions targets (28-43 kt N reduction) and 38-64% P reduction targets (4-6.6 kt P reduction), depending on scenario. SANBALTS output showed that even partial fulfillment of nutrient reduction targets could have ameliorating effects on eutrophication conditions. Meeting BSAP targets will require addressing additional sources, such as sewage. A common approach to apportioning sources to external nutrients loads could enable further assessment of the feasibility of eutrophication management targets.Peer reviewe

    Parasitism as a Driver of Trophic Niche Specialisation.

    Get PDF
    The population trophic niche of free-living species can be subdivided into smaller niches comprising individuals specialising on specific food items. The roles of parasites in creating these specialised subgroups remain unclear. Intrapopulation differences in parasite infections can develop from specialist individuals within populations. Their differences in morphology and habitat can increase their exposure to intermediate hosts via infected prey, altering their parasite fauna. However, we also suggest that parasite infections can drive this niche specialisation. Through mechanisms including parasite manipulation, altered host phenotypes, and/ or parasite-mediated competition, parasites can alter the resource availability of their hosts, altering their trophic niches. Thus, trophic niche specialisations could result from parasitism via varying influences on host traits, raising questions for future research

    Habitat-Specific Morphological Variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a Drainage Basin

    Get PDF
    Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species

    Replicated shape variation between simple and complex habitats in two estuarine fishes

    Get PDF
    A replicated pattern of habitat-associated morphology among different lineages may represent adaptive convergence. Deviation from the replicated (shared) pattern of diversification reflects unique (e.g. species specific) effects resulting from site- or species-specific selection, intrinsic factors (e.g. G matrix differences) or chance historical events (e.g. genetic drift). For two distantly-related estuarine fishes [Lagodon rhomboides (Sparidae; Linnaeus) and Leiostomus xanthurus (Sciaenidae; Lacepede)], we examined shared and unique instances of body shape variation between seagrass (complex) and sand (simple) microhabitats at four sites. We found extensive shape variation between microhabitats for both species. As a shared response, both species from sand had subterminal snouts and long caudal peduncles, whereas those from seagrass had terminal snouts and deep bodies. Unique responses involved a greater difference in Lagodon rhomboides head shape between microhabitats compared to L. xanthurus. Patterns of shape variation fit ecomorphological predictions for foraging in the respective microhabitats (simple versus complex) because deep bodies are expected for fish that must negotiate complex habitats and subterminal snouts facilitate benthic foraging common in barren habitats. Parallel differentiation between microhabitats simultaneously suggests that individuals of each species use a particular microhabitat within estuaries for development and the differentiation in shape represents adaptive convergence. Spatial variation in the magnitude of shape differences between microhabitats was an unexpected finding and suggests that phenotypic variation operates at multiple scales within estuaries

    Behaviourally Mediated Phenotypic Selection in a Disturbed Coral Reef Environment

    Get PDF
    Natural and anthropogenic disturbances are leading to changes in the nature of many habitats globally, and the magnitude and frequency of these perturbations are predicted to increase under climate change. Globally coral reefs are one of the most vulnerable ecosystems to climate change. Fishes often show relatively rapid declines in abundance when corals become stressed and die, but the processes responsible are largely unknown. This study explored the mechanism by which coral bleaching may influence the levels and selective nature of mortality on a juvenile damselfish, Pomacentrus amboinensis, which associates with hard coral. Recently settled fish had a low propensity to migrate small distances (40 cm) between habitat patches, even when densities were elevated to their natural maximum. Intraspecific interactions and space use differ among three habitats: live hard coral, bleached coral and dead algal-covered coral. Large fish pushed smaller fish further from the shelter of bleached and dead coral thereby exposing smaller fish to higher mortality than experienced on healthy coral. Small recruits suffered higher mortality than large recruits on bleached and dead coral. Mortality was not size selective on live coral. Survival was 3 times as high on live coral as on either bleached or dead coral. Subtle behavioural interactions between fish and their habitats influence the fundamental link between life history stages, the distribution of phenotypic traits in the local population and potentially the evolution of life history strategies
    • …
    corecore