17 research outputs found

    Thyroxine-thyroid hormone receptor interactions

    Get PDF
    ABSTRACTThyroid hormone (TH) actions are mediated by nuclear receptors (TRs α and β) that bind triiodothyronine (T3, 3,5,3′-triiodo-l-thyronine) with high affinity, and its precursor thyroxine (T4, 3,5,3′,5′-tetraiodo-l-thyronine) with lower affinity. T4 contains a bulky 5′ iodine group absent from T3. Because T3 is buried in the core of the ligand binding domain (LBD), we have predicted that TH analogues with 5′ substituents should fit poorly into the ligand binding pocket and perhaps behave as antagonists. We therefore examined how T4 affects TR activity and conformation. We obtained several lines of evidence (ligand dissociation kinetics, migration on hydrophobic interaction columns, and non-denaturing gels) that TR-T4 complexes adopt a conformation that differs from TR-T3 complexes in solution. Nonetheless, T4 behaves as an agonist in vitro (in effects on coregulator and DNA binding) and in cells, when conversion to T3 does not contribute to agonist activity. We determined x-ray crystal structures of the TRβ LBD in complex with T3 and T4 at 2.5-Å and 3.1-Å resolution. Comparison of the structures reveals that TRβ accommodates T4 through subtle alterations in the loop connecting helices 11 and 12 and amino acid side chains in the pocket, which, together, enlarge a niche that permits helix 12 to pack over the 5′ iodine and complete the coactivator binding surface. While T3 is the major active TH, our results suggest that T4 could activate nuclear TRs at appropriate concentrations. The ability of TR to adapt to the 5′ extension should be considered in TR ligand design

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Thyroid hormone receptor-ß mutations conferring hormone resistance and reduced corepressor release exhibit decreased stability in the N-Terminal Ligand-Binding domain

    No full text
    Resistance to thyroid hormone (RTH) syndrome is associated with mutations in the human thyroid hormone receptor-ß (hTRß), many of which show marked reduction in hormone binding. Here, we investigated the structural consequences of two RTH mutants (A234T and R243Q), residing in the flexible N-terminal portion of the ligand binding domain (LBD), which exhibit modestly reduced hormone binding with impaired release of corepressor. X-ray crystallography analyses revealed that these two RTH mutants modulate the position of this flexible region by either altering the movement of helix 1 (A234T) or disrupting a salt bridge (R243Q). The subsequent increased flexibility and mobility in regions after the two sites of mutation coincided with a disorganized LBD. Consistent with this finding, the ability of these mutant N-terminal regions (234–260) to recruit the remaining LBD was decreased in a ligand-dependent helix assembly assay. Collectively, these data suggest that structural information imparted by the flexible segment in the N-terminal LBD is critical for overall stability of the LBD. Thus, these structural analyses provide mechanistic insight into the etiology of RTH disease in human TRß mutants that exhibit hormone binding with decreased ligand-dependent corepressor release

    Differential effects of TR ligands on hormone dissociation rates: Evidence for multiple ligand entry/exit pathways

    No full text
    Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here we show, that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2) < 2 h) of , radiolabeled T(3) vs. T(3) (T(1/2), approximate to 5-7 h). We cannot discern relationships between this effect and ligand size, activity or affinity for TR beta. One ligand, GC-24, binds the TR LBC and (weakly) to the TR beta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation. (C) 2009 Elsevier Ltd. All rights reserved.NIH[DK41482]U.S. National Institutes of Health (NIH)NIH[DK51281]U.S. National Institutes of Health (NIH)NIH[DK52798]U.S. National Institutes of Health (NIH)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP[2006/00182-8
    corecore