205 research outputs found

    Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat

    Get PDF
    BACKGROUND: Our understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact. RESULTS: We report here a large-scale transcriptomics study using the Affymetrix wheat GeneChip(® )aimed at providing this link between wheat and model systems and at identifying early meiotic genes. Analysis of the microarray data identified 1,350 transcripts temporally-regulated during the early stages of meiosis. Expression profiles with annotated transcript functions including chromatin condensation, synaptonemal complex formation, recombination and fertility were identified. From the 1,350 transcripts, 30 displayed at least an eight-fold expression change between and including pre-meiosis and telophase II, with more than 50% of these having no similarities to known sequences in NCBI and TIGR databases. CONCLUSION: This resource is now available to support research into the molecular basis of pairing and recombination control in the complex polyploid, wheat

    Harmonic Force Spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    Get PDF
    International audienceMolecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using 'harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human b-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load

    Dictyostelium Myosin Bipolar Thick Filament Formation: Importance of Charge and Specific Domains of the Myosin Rod

    Get PDF
    Myosin-II thick filament formation in Dictyostelium is an excellent system for investigating the phenomenon of self-assembly, as the myosin molecule itself contains all the information required to form a structure of defined size. Phosphorylation of only three threonine residues can dramatically change the assembly state of myosin-II. We show here that the C-terminal 68 kDa of the myosin-II tail (termed AD-Cterm) assembles in a regulated manner similar to full-length myosin-II and forms bipolar thick filament (BTF) structures when a green fluorescent protein (GFP) “head” is added to the N terminus. The localization of this GFP-AD-Cterm to the cleavage furrow of dividing Dictyostelium cells depends on assembly state, similar to full-length myosin-II. This tail fragment therefore represents a good model system for the regulated formation and localization of BTFs. By reducing regulated BTF assembly to a more manageable model system, we were able to explore determinants of myosin-II self-assembly. Our data support a model in which a globular head limits the size of a BTF, and the large-scale charge character of the AD-Cterm region is important for BTF formation. Truncation analysis of AD-Cterm tail fragments shows that assembly is delicately balanced, resulting in assembled myosin-II molecules that are poised to disassemble due to the phosphorylation of only three threonines

    Contractility parameters of human -cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human ?-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human ?-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human ?-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca2+-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human ?-cardiac myosin contractility as a result of the R403Q mutation

    Learning to Teach Argumentation: Research and development in the science classroom

    Get PDF
    The research reported in this study focuses on an investigation into the teaching of argumentation in secondary science classrooms. Over a one-year period, a group of 12 teachers from schools in the greater London area attended a series of workshops to develop materials and strategies to support the teaching of argumentation in scientific contexts. Data were collected at the beginning and end of the year by audio and video recording lessons where the teachers attempted to implement argumentation. To assess the quality of argumentation, analytical tools derived from Toulmin's argument pattern (TAP) were developed and applied to classroom transcripts. Analysis shows there was development in teachers' use of argumentation across the year. Results indicate that the pattern of use of argumentation is teacher-specific, as is the nature of change. To inform future professional development programmes, transcripts of five teachers, three showing a significant change and two no change, were analysed in more detail to identify features of teachers' oral contributions that facilitated and supported argumentation. The analysis showed that all teachers attempted to encourage a variety of processes involved in argumentation and that the teachers whose lessons included the highest quality of argumentation (TAP analysis) also encouraged higher order processes in their teaching. The analysis of teachers' facilitation of argumentation has helped to guide the development of in-service materials and to identify the barriers to learning in the professional development of less experienced teachers

    A study of three southern high-mass star-forming regions

    Full text link
    Based on color-selected IRAS point sources, we have started to conduct a survey of 47 high-mass star-forming regions in the southern hemisphere in 870um dust continuum and molecular line emission in several frequency ranges between 290 GHz and 806 GHz. This paper describes the pilot study of the three sources IRAS12326-6245, IRAS16060-5146, and IRAS16065-5158. To characterize the physical and chemical properties of southern massive star-forming regions, the three high-luminosity southern hemisphere hot cores were observed with APEX in five frequency setups aimed at groups of lines from the following molecules: CH3OH, H2CO, and CH3CN. Using the LTE approximation, temperatures, source sizes, and column densities were determined through modeling of synthetic spectra with the XCLASS program. Dust continuum observations were done with the Large APEX BOlometer CAmera (LABOCA) at 870um and the 3mm continuum was imaged with the ATCA. Based on the detection of high-excitation CH3CN lines and lines from complex organic species, the three sources are classified as line rich, hot core type sources. For all three, the modeling indicates that the line emission emerges from a combination of an extended, cooler envelope, and a hot compact component. All three sources show an overabundance of oxygen-bearing species compared to nitrogen-bearing species. Based on the results obtained in the three sources, which served as templates for the survey, the most promising (and feasible) frequency setups for the remaining 44 sources were decided upon.Comment: 18 pages, 28 figures plus 23 pages online material; accepted for publication in A&

    An Effective-Medium Tight-Binding Model for Silicon

    Full text link
    A new method for calculating the total energy of Si systems is presented. The method is based on the effective-medium theory concept of a reference system. Instead of calculating the energy of an atom in the system of interest a reference system is introduced where the local surroundings are similar. The energy of the reference system can be calculated selfconsistently once and for all while the energy difference to the reference system can be obtained approximately. We propose to calculate it using the tight-binding LMTO scheme with the Atomic-Sphere Approximation(ASA) for the potential, and by using the ASA with charge-conserving spheres we are able to treat open system without introducing empty spheres. All steps in the calculational method is {\em ab initio} in the sense that all quantities entering are calculated from first principles without any fitting to experiment. A complete and detailed description of the method is given together with test calculations of the energies of phonons, elastic constants, different structures, surfaces and surface reconstructions. We compare the results to calculations using an empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX, CAMP-090594-
    corecore