52 research outputs found
Census of the Local Universe (CLU) Narrow-Band Survey I: Galaxy Catalogs from Preliminary Fields
We present the Census of the Local Universe (CLU) narrow-band survey to
search for emission-line (\ha) galaxies. CLU-\ha~has imaged 3 of
the sky (26,470~deg) with 4 narrow-band filters that probe a distance out
to 200~Mpc. We have obtained spectroscopic follow-up for galaxy candidates in
14 preliminary fields (101.6~deg) to characterize the limits and
completeness of the survey. In these preliminary fields, CLU can identify
emission lines down to an \ha~flux limit of
~ at 90\% completeness, and recovers 83\%
(67\%) of the \ha~flux from catalogued galaxies in our search volume at the
=2.5 (=5) color excess levels. The contamination from galaxies
with no emission lines is 61\% (12\%) for =2.5 (=5). Also, in
the regions of overlap between our preliminary fields and previous
emission-line surveys, we recover the majority of the galaxies found in
previous surveys and identify an additional 300 galaxies. In total, we
find 90 galaxies with no previous distance information, several of which are
interesting objects: 7 blue compact dwarfs, 1 green pea, and a Seyfert galaxy;
we also identified a known planetary nebula. These objects show that the
CLU-\ha~survey can be a discovery machine for objects in our own Galaxy and
extreme galaxies out to intermediate redshifts. However, the majority of the
CLU-\ha~galaxies identified in this work show properties consistent with normal
star-forming galaxies. CLU-\ha~galaxies with new redshifts will be added to
existing galaxy catalogs to focus the search for the electromagnetic
counterpart to gravitational wave events.Comment: 28 pages, 22 figures, 4 tables (Accepted to ApJ
Radial Star Formation Histories in 32 Nearby Galaxies
The spatially resolved star formation histories are studied for 32 normal
star-forming galaxies drawn from the the Spitzer Extended Disk Galaxy
Exploration Science survey. At surface brightness sensitivities fainter than 28
mag arcsec, the new optical photometry is deep enough to complement
archival ultraviolet and infrared imaging and to explore the properties of the
emission well beyond the traditional optical extents of these nearby galaxies.
Fits to the spectral energy distributions using a delayed star formation
history model indicate a subtle but interesting average radial trend for the
spiral galaxies: the inner stellar systems decrease in age with increasing
radius, consistent with inside-out disk formation, but the trend reverses in
the outermost regions with the stellar age nearly as old as the innermost
stars. These results suggest an old stellar outer disk population formed
through radial migration and/or the cumulative history of minor mergers and
accretions of satellite dwarf galaxies. The subset of S0 galaxies studied here
show the opposite trend compared to what is inferred for spirals:
characteristic stellar ages that are increasingly older with radius for the
inner portions of the galaxies, and increasingly younger stellar ages for the
outer portions. This result suggests that either S0 galaxies are not well
modeled by a delayed- model, and/or that S0 galaxies have a more
complicated formation history than spiral galaxies.Comment: Accepted for publication in the Astronomical Journal. arXiv admin
note: text overlap with arXiv:1511.0328
PHANGS-JWST: Data-processing Pipeline and First Full Public Data Release
The exquisite angular resolution and sensitivity of JWST are opening a new window for our understanding of the Universe. In nearby galaxies, JWST observations are revolutionizing our understanding of the first phases of star formation and the dusty interstellar medium. Nineteen local galaxies spanning a range of properties and morphologies across the star-forming main sequence have been observed as part of the PHANGS-JWST Cycle 1 Treasury program at spatial scales of ∼5–50 pc. Here, we describe pjpipe, an image-processing pipeline developed for the PHANGS-JWST program that wraps around and extends the official JWST pipeline. We release this pipeline to the community as it contains a number of tools generally useful for JWST NIRCam and MIRI observations. Particularly for extended sources, pjpipe products provide significant improvements over mosaics from the MAST archive in terms of removing instrumental noise in NIRCam data, background flux matching, and calibration of relative and absolute astrometry. We show that slightly smoothing F2100W MIRI data to 0.″9 (degrading the resolution by about 30%) reduces the noise by a factor of ≈3. We also present the first public release (DR1.1.0) of the pjpipe processed eight-band 2–21 μm imaging for all 19 galaxies in the PHANGS-JWST Cycle 1 Treasury program. An additional 55 galaxies will soon follow from a new PHANGS-JWST Cycle 2 Treasury program
Calibrating mid-infrared emission as a tracer of obscured star formation on HII-region scales in the era of JWST
Measurements of the star formation activity on cloud scales are fundamental
to uncovering the physics of the molecular cloud, star formation, and stellar
feedback cycle in galaxies. Infrared (IR) emission from small dust grains and
polycyclic aromatic hydrocarbons (PAHs) are widely used to trace the obscured
component of star formation. However, the relation between these emission
features and dust attenuation is complicated by the combined effects of dust
heating from old stellar populations and an uncertain dust geometry with
respect to heating sources. We use images obtained with NIRCam and MIRI as part
of the PHANGS--JWST survey to calibrate dust emission at 21, and the
emission in the PAH-tracing bands at 3.3, 7.7, 10, and 11.3 as
tracers of obscured star formation. We analyse 20000 optically selected
HII regions across 19 nearby star-forming galaxies, and benchmark their IR
emission against dust attenuation measured from the Balmer decrement. We model
the extinction-corrected H flux as the sum of the observed H
emission and a term proportional to the IR emission, with as the
proportionality coefficient. A constant leads to extinction-corrected
H estimates which agree with those obtained with the Balmer decrement
with a scatter of 0.1 dex for all bands considered. Among these bands,
21 emission is demonstrated to be the best tracer of dust
attenuation. The PAH-tracing bands underestimate the correction for bright HII
regions, since in these environments the ratio of PAH-tracing bands to 21 decreases, signalling destruction of the PAH molecules. For fainter HII
regions all bands suffer from an increasing contamination from the diffuse
infrared background.Comment: accepted for publication in A&
PHANGS-ML: Dissecting Multiphase Gas and Dust in Nearby Galaxies Using Machine Learning
The PHANGS survey uses Atacama Large Millimeter/submillimeter Array, Hubble Space Telescope, Very Large Telescope, and JWST to obtain an unprecedented high-resolution view of nearby galaxies, covering millions of spatially independent regions. The high dimensionality of such a diverse multiwavelength data set makes it challenging to identify new trends, particularly when they connect observables from different wavelengths. Here, we use unsupervised machine-learning algorithms to mine this information-rich data set to identify novel patterns. We focus on three of the PHANGS-JWST galaxies, for which we extract properties pertaining to their stellar populations; warm ionized and cold molecular gas; and polycyclic aromatic hydrocarbons (PAHs), as measured over 150 pc scale regions. We show that we can divide the regions into groups with distinct multiphase gas and PAH properties. In the process, we identify previously unknown galaxy-wide correlations between PAH band and optical line ratios and use our identified groups to interpret them. The correlations we measure can be naturally explained in a scenario where the PAHs and the ionized gas are exposed to different parts of the same radiation field that varies spatially across the galaxies. This scenario has several implications for nearby galaxies: (i) The uniform PAH ionized fraction on 150 pc scales suggests significant self-regulation in the interstellar medium, (ii) the PAH 11.3/7.7 μm band ratio may be used to constrain the shape of the non-ionizing far-ultraviolet to optical part of the radiation field, and (iii) the varying radiation field affects line ratios that are commonly used as PAH size diagnostics. Neglecting this effect leads to incorrect or biased PAH sizes
PHANGS-ML: dissecting multiphase gas and dust in nearby galaxies using machine learning
The PHANGS survey uses ALMA, HST, VLT, and JWST to obtain an unprecedented
high-resolution view of nearby galaxies, covering millions of spatially
independent regions. The high dimensionality of such a diverse multi-wavelength
dataset makes it challenging to identify new trends, particularly when they
connect observables from different wavelengths. Here we use unsupervised
machine learning algorithms to mine this information-rich dataset to identify
novel patterns. We focus on three of the PHANGS-JWST galaxies, for which we
extract properties pertaining to their stellar populations; warm ionized and
cold molecular gas; and Polycyclic Aromatic Hydrocarbons (PAHs), as measured
over 150 pc-scale regions. We show that we can divide the regions into groups
with distinct multiphase gas and PAH properties. In the process, we identify
previously-unknown galaxy-wide correlations between PAH band and optical line
ratios and use our identified groups to interpret them. The correlations we
measure can be naturally explained in a scenario where the PAHs and the ionized
gas are exposed to different parts of the same radiation field that varies
spatially across the galaxies. This scenario has several implications for
nearby galaxies: (i) The uniform PAH ionized fraction on 150 pc scales suggests
significant self-regulation in the ISM, (ii) the PAH 11.3/7.7 \mic~ band ratio
may be used to constrain the shape of the non-ionizing far-ultraviolet to
optical part of the radiation field, and (iii) the varying radiation field
affects line ratios that are commonly used as PAH size diagnostics. Neglecting
this effect leads to incorrect or biased PAH sizes.Comment: Main results in figures 6 and 12. Submitted to ApJ, and comments are
welcome
A Two-Component Probability Distribution Function Describes the mid-IR Emission from the Disks of Star-Forming Galaxies
High-resolution JWST-MIRI images of nearby spiral galaxies reveal emission
with complex substructures that trace dust heated both by massive young stars
and the diffuse interstellar radiation field. We present high angular (0."85)
and physical resolution (20-80 pc) measurements of the probability distribution
function (PDF) of mid-infrared (mid-IR) emission (7.7-21 m) from 19 nearby
star-forming galaxies from the PHANGS-JWST Cycle-1 Treasury. The PDFs of mid-IR
emission from the disks of all 19 galaxies consistently show two distinct
components: an approximately log-normal distribution at lower intensities and a
high-intensity power-law component. These two components only emerge once
individual star-forming regions are resolved. Comparing with locations of HII
regions identified from VLT/MUSE H-mapping, we infer that the power-law
component arises from star-forming regions and thus primarily traces dust
heated by young stars. In the continuum-dominated 21 m band, the power-law
is more prominent and contains roughly half of the total flux. At 7.7-11.3
m, the power-law is suppressed by the destruction of small grains
(including PAHs) close to HII regions while the log-normal component tracing
the dust column in diffuse regions appears more prominent. The width and shape
of the log-normal diffuse emission PDFs in galactic disks remain consistent
across our sample, implying a log-normal gas column density
(H)cm shaped by supersonic turbulence with typical
(isothermal) turbulent Mach numbers . Finally, we describe how the
PDFs of galactic disks are assembled from dusty HII regions and diffuse gas,
and discuss how the measured PDF parameters correlate with global properties
such as star-formation rate and gas surface density.Comment: 30 pages without appendix, 17 figures, (with appendix images of full
sample: 56 pages, 39 figures), accepted in A
Census of the Local Universe (CLU) Narrow-Band Survey I: Galaxy Catalogs from Preliminary Fields
We present the Census of the Local Universe (CLU) narrow-band survey to search for emission-line (Hα) galaxies. CLU-Hα has imaged ≈3π of the sky (26,470 deg^2) with 4 narrow-band filters that probe a distance out to 200 Mpc. We have obtained spectroscopic follow-up for galaxy candidates in 14 preliminary fields (101.6 deg^2) to characterize the limits and completeness of the survey. In these preliminary fields, CLU can identify emission lines down to an Hα flux limit of 10^(−14) erg s^(−1) cm^(−2) at 90\% completeness, and recovers 83% (67%) of the Hα flux from catalogued galaxies in our search volume at the Σ=2.5 (Σ=5) color excess levels. The contamination from galaxies with no emission lines is 61% (12%) for Σ=2.5 (Σ=5). Also, in the regions of overlap between our preliminary fields and previous emission-line surveys, we recover the majority of the galaxies found in previous surveys and identify an additional ≈300 galaxies. In total, we find 90 galaxies with no previous distance information, several of which are interesting objects: 7 blue compact dwarfs, 1 green pea, and a Seyfert galaxy; we also identified a known planetary nebula. These objects show that the CLU-Hα survey can be a discovery machine for objects in our own Galaxy and extreme galaxies out to intermediate redshifts. However, the majority of the CLU-Hα galaxies identified in this work show properties consistent with normal star-forming galaxies. CLU-Hα galaxies with new redshifts will be added to existing galaxy catalogs to focus the search for the electromagnetic counterpart to gravitational wave events
CropPol: a dynamic, open and global database on crop pollination
Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved
Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.
To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC
- …