179 research outputs found
Soluble `Supersymmetric' Quantum XY Model
We present a `supersymmetric' modification of the -dimensional quantum
rotor model whose ground state is exactly soluble. The model undergoes a
vortex-binding transition from insulator to metal as the rotor coupling is
varied. The Hamiltonian contains three-site terms which are relevant: they
change the universality class of the transition from that of the ()--- to
the -dimensional classical XY model. The metallic phase has algebraic ODLRO
but the superfluid density is identically zero. Variational wave functions for
single-particle and collective excitations are presented.Comment: 12 pages, REVTEX 3.0, IUCM93-00
Vortex ordering in fully-frustrated superconducting systems with dice lattice
The structure and the degenracy of the ground state of a fully-frustrated
XY-model are investigated for the case of a dice lattice geometry.
The results are applicable for the description of Josephson junction arrays
and thin superconducting wire networks in the external magnetic field providing
half-integer number of flux quanta per plaquette. The mechanisms of disordering
of vortex pattern in such systems are briefly discussed.Comment: 10 pages, 3 figure
Hidden dimers and the matrix maps: Fibonacci chains re-visited
The existence of cycles of the matrix maps in Fibonacci class of lattices is
well established. We show that such cycles are intimately connected with the
presence of interesting positional correlations among the constituent `atoms'
in a one dimensional quasiperiodic lattice. We particularly address the
transfer model of the classic golden mean Fibonacci chain where a six cycle of
the full matrix map exists at the centre of the spectrum [Kohmoto et al, Phys.
Rev. B 35, 1020 (1987)], and for which no simple physical picture has so far
been provided, to the best of our knowledge. In addition, we show that our
prescription leads to a determination of other energy values for a mixed model
of the Fibonacci chain, for which the full matrix map may have similar cyclic
behaviour. Apart from the standard transfer-model of a golden mean Fibonacci
chain, we address a variant of it and the silver mean lattice, where the
existence of four cycles of the matrix map is already known to exist. The
underlying positional correlations for all such cases are discussed in details.Comment: 14 pages, 2 figures. Submitted to Physical Review
The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant
We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at
Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young
oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the
resultant data cube, we have been able to reconstruct the full 3D structure of
the system of [O III] filaments. The majority of the ejecta form a ring of
~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We
conclude that SNR N132D is approaching the end of the reverse shock phase
before entering the fully thermalized Sedov phase of evolution. We speculate
that the ring of oxygen-rich material comes from ejecta in the equatorial plane
of a bipolar explosion, and that the overall shape of the SNR is strongly
influenced by the pre-supernova mass loss from the progenitor star. We find
tantalizing evidence of a polar jet associated with a very fast oxygen-rich
knot, and clear evidence that the central star has interacted with one or more
dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8
figure
Enhancement of pair correlation in a one-dimensional hybridization model
We propose an integrable model of one-dimensional (1D) interacting electrons
coupled with the local orbitals arrayed periodically in the chain. Since the
local orbitals are introduced in a way that double occupation is forbidden, the
model keeps the main feature of the periodic Anderson model with an interacting
host. For the attractive interaction, it is found that the local orbitals
enhance the effective mass of the Cooper-pair-like singlets and also the pair
correlation in the ground state. However, the persistent current is depressed
in this case. For the repulsive interaction case, the Hamiltonian is
non-Hermitian but allows Cooper pair solutions with small momenta, which are
induced by the hybridization between the extended state and the local orbitals.Comment: 11 page revtex, no figur
Elasticity and Petri nets
Digital electronic systems typically use synchronous clocks and primarily assume fixed duration of their operations to simplify the design process. Time elastic systems can be constructed either by replacing the clock with communication handshakes (asynchronous version) or by augmenting the clock with a synchronous version of a handshake (synchronous version). Time elastic systems can tolerate static and dynamic changes in delays (asynchronous case) or latencies (synchronous case) of operations that can be used for modularity, ease of reuse and better power-delay trade-off. This paper describes methods for the modeling, performance analysis and optimization of elastic systems using Marked Graphs and their extensions capable of describing behavior with early evaluation. The paper uses synchronous elastic systems (aka latency-tolerant systems) for illustrating the use of Petri nets, however, most of the methods can be applied without changes (except changing the delay model associated with events of the system) to asynchronous elastic systems.Peer ReviewedPostprint (author's final draft
A survey of research in the application of tolerance analysis to the design of mechanical assemblies
Excavating youth justice reform: historical mapping and speculative prospects
This article analytically excavates youth justice reform (in England and Wales) by situating it in historical context, critically reviewing the competing rationales that underpin it and exploring the overarching social, economic, and political conditions within which it is framed. It advances an argument that the foundations of a recognisably modern youth justice system had been laid by the opening decade of the 20th Century and that youth justice reform in the post‐Second World War period has broadly been structured over four key phases. The core contention is that historical mapping facilitates an understanding of the unreconciled rationales and incoherent nature of youth justice reform to date, while also providing a speculative sense of future prospects
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
- …