247 research outputs found

    The role of working memory for cognitive control in anorexia nervosa versus substance use disorder

    Get PDF
    Prefrontal cortex executive functions, such as working memory (WM) interact with limbic processes to foster impulse control. Such an interaction is referred to in a growing body of publications by terms such as cognitive control, cognitive inhibition, affect regulation, self-regulation, top-down control, and cognitive-emotion interaction. The rising trend of research into cognitive control of impulsivity, using various related terms reflects the importance of research into impulse control, as failure to employ cognitions optimally may eventually result in mental disorder. Against this background, we take a novel approach using an impulse control spectrum model - where anorexia nervosa (AN) and substance use disorder (SUD) are at opposite extremes - to examine the role of WM for cognitive control. With this aim, we first summarize WM processes in the healthy brain in order to frame a systematic review of the neuropsychological, neural and genetic findings of AN and SUD. In our systematic review of WM/cognitive control, we found n = 15 studies of AN with a total of n = 582 AN and n = 365 HC participants; and n = 93 studies of SUD with n = 9106 SUD and n = 3028 HC participants. In particular, we consider how WM load/capacity may support the neural process of excessive epistemic foraging (cognitive sampling of the environment to test predictions about the world) in AN that reduces distraction from salient stimuli. We also consider the link between WM and cognitive control in people with SUD who are prone to 'jumping to conclusions' and reduced epistemic foraging. Finally, in light of our review, we consider WM training as a novel research tool and an adjunct to enhance treatment that improves cognitive control of impulsivity. © 2017 Brooks, Funk, Young and Schiöth

    Prognostic value of impulsivity in treatment outcomes in patients with alcohol use and/or cocaine use disorder in a rehabilitation programme

    Get PDF
    Introduction: Impulsivity is linked to factors that are negatively correlated with drug and alcohol use. Individuals with substance use disorder (SUD) often suffer from cognitive deficits and, additionally, have high levels of impulsivity. Studies show that cognitive deficits are associated with lower self-efficacy (SE), and the latter is considered an important indicator of SUD management and treatment outcomes. The relationship between impulsivity and SE, however, remains unclear. This prospective study examined impulsivity as a prognostic indicator for SE in SUD populations admitted for inpatient treatment. Methods: Fifty individuals, aged 18–61, with either a cocaine use and/or alcohol use disorder diagnosis were examined within 72 hours of (1) the start and (2) completion of treatment. Results: Impulsivity was a significant predictor of SE. Duration of abstinence (in days), estimated intelligence, global assessment of functioning (GAF) and patient age explained 16% of the variance in the change in SE at discharge. After including impulsivity in the regression model, the total variance explained by the model was 28% (F [5.505] = 3.47, p = 0.01). Impulsivity explained an additional 12% of the variance after controlling for the above variables (R2 change = 0.12, F change [4.45] = 7.206, p = 0.01). Conclusion: Impulsivity is a significant predictor of SE following an 8-week impatient treatment programme for individuals diagnosed with SUD. To our knowledge, this is the first study to demonstrate that impulsivity holds prognostic value in respect of the change in SE after inpatient treatment of individuals with SUD. Based on our findings, replication studies are warranted

    Discovery and Validation of Molecular Biomarkers for Colorectal Adenomas and Cancer with Application to Blood Testing

    Get PDF
    BACKGROUND & AIMS: Colorectal cancer incidence and deaths are reduced by the detection and removal of early-stage, treatable neoplasia but we lack proven biomarkers sensitive for both cancer and pre-invasive adenomas. The aims of this study were to determine if adenomas and cancers exhibit characteristic patterns of biomarker expression and to explore whether a tissue-discovered (and validated) biomarker is differentially expressed in the plasma of patients with colorectal adenomas or cancer. METHODS: Candidate RNA biomarkers were identified by oligonucleotide microarray analysis of colorectal specimens (222 normal, 29 adenoma, 161 adenocarcinoma and 50 colitis) and validated in a previously untested cohort of 68 colorectal specimens using a custom-designed oligonucleotide microarray. One validated biomarker, KIAA1199, was assayed using qRT-PCR on plasma extracted RNA from 20 colonoscopy-confirmed healthy controls, 20 patients with adenoma, and 20 with cancer. RESULTS: Genome-wide analysis uncovered reproducible gene expression signatures for both adenomas and cancers compared to controls. 386/489 (79%) of the adenoma and 439/529 (83%) of the adenocarcinoma biomarkers were validated in independent tissues. We also identified genes differentially expressed in adenomas compared to cancer. KIAA1199 was selected for further analysis based on consistent up-regulation in neoplasia, previous studies and its interest as an uncharacterized gene. Plasma KIAA1199 RNA levels were significantly higher in patients with either cancer or adenoma (31/40) compared to neoplasia-free controls (6/20). CONCLUSIONS: Colorectal neoplasia exhibits characteristic patterns of gene expression. KIAA1199 is differentially expressed in neoplastic tissues and KIAA1199 transcripts are more abundant in the plasma of patients with either cancer or adenoma compared to controls

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Val103Ile polymorphism of the melanocortin-4 receptor gene (MC4R) in cancer cachexia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At present pathogenic mechanisms of cancer cachexia are poorly understood. Previous evidence in animal models implicates the melanocortin-4 receptor gene (<it>MC4R</it>) in the development of cancer cachexia. In humans, <it>MC4R </it>mutations that lead to an impaired receptor function are associated with obesity; in contrast, the most frequent polymorphism (Val103Ile, rs2229616; heterozygote frequency approximately 2%) was shown to be negatively associated with obesity. We tested if cancer patients that are homo-/heterozygous for the Val103Ile polymorphism are more likely to develop cachexia and/or a loss of appetite than non-carriers of the 103Ile-allele.</p> <p>Methods</p> <p>BMI (body mass index in kg/m<sup>2</sup>) of 509 patients (295 males) with malignant neoplasms was determined; additionally patients were asked about premorbid/pretherapeutical changes of appetite and weight loss. Cachexia was defined as a weight loss of at least 5% prior to initiation of therapy; to fulfil this criterion this weight loss had to occur independently of other plausible reasons; in single cases weight loss was the initial reason for seeing a physician. The average age in years (± SD) was 59.0 ± 14.5 (males: 58.8 ± 14.0, females 59.2 ± 14.0). Blood samples were taken for genotyping of the Val103Ile by PCR- RFLP.</p> <p>Results</p> <p>Most of the patients suffered from lymphoma, leukaemia and gastrointestinal tumours. 107 of the patients (21%) fulfilled our criteria for cancer cachexia. We did not detect association between the Val103Ile polymorphism and cancer cachexia. However, if we exploratively excluded the patients with early leucaemic stages, we detected a trend towards the opposite effect (p < 0.05); heterozygotes for the 103Ile-allele developed cancer cachexia less frequently in comparison to the rest of the study group. Changes of appetite were not associated with the 103Ile-allele carrier status (p > 0.39).</p> <p>Conclusion</p> <p>Heterozygotes for the 103Ile-allele are not more prone to develop cancer cachexia than patients without this allele; possibly, Ile103 carriers might be more resistant to cancer cachexia in patients with solid tumors. Further studies of the melanocortinergic system in cachexia of patients with solid tumors are warranted.</p

    A simple rule governs the evolution and development of hominin tooth size

    Get PDF
    The variation in molar tooth size in humans and our closest relatives (hominins) has strongly influenced our view of human evolution. The reduction in overall size and disproportionate decrease in third molar size have been noted for over a century, and have been attributed to reduced selection for large dentitions owing to changes in diet or the acquisition of cooking1, 2. The systematic pattern of size variation along the tooth row has been described as a ‘morphogenetic gradient’ in mammal, and more specifically hominin, teeth since Butler3 and Dahlberg4. However, the underlying controls of tooth size have not been well understood, with hypotheses ranging from morphogenetic fields3 to the clone theory5. In this study we address the following question: are there rules that govern how hominin tooth size evolves? Here we propose that the inhibitory cascade, an activator–inhibitor mechanism that affects relative tooth size in mammals6, produces the default pattern of tooth sizes for all lower primary postcanine teeth (deciduous premolars and permanent molars) in hominins. This configuration is also equivalent to a morphogenetic gradient, finally pointing to a mechanism that can generate this gradient. The pattern of tooth size remains constant with absolute size in australopiths (including Ardipithecus, Australopithecus and Paranthropus). However, in species of Homo, including modern humans, there is a tight link between tooth proportions and absolute size such that a single developmental parameter can explain both the relative and absolute sizes of primary postcanine teeth. On the basis of the relationship of inhibitory cascade patterning with size, we can use the size at one tooth position to predict the sizes of the remaining four primary postcanine teeth in the row for hominins. Our study provides a development-based expectation to examine the evolution of the unique proportions of human teeth

    Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

    Get PDF
    Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus

    Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus

    Get PDF
    Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies
    • …
    corecore