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Prefrontal cortex executive functions, such as working memory (WM) interact with limbic

processes to foster impulse control. Such an interaction is referred to in a growing body

of publications by terms such as cognitive control, cognitive inhibition, affect regulation,

self-regulation, top-down control, and cognitive–emotion interaction. The rising trend

of research into cognitive control of impulsivity, using various related terms reflects the

importance of research into impulse control, as failure to employ cognitions optimally

may eventually result in mental disorder. Against this background, we take a novel

approach using an impulse control spectrum model – where anorexia nervosa (AN) and

substance use disorder (SUD) are at opposite extremes – to examine the role of WM for

cognitive control. With this aim, we first summarize WM processes in the healthy brain

in order to frame a systematic review of the neuropsychological, neural and genetic

findings of AN and SUD. In our systematic review of WM/cognitive control, we found

n = 15 studies of AN with a total of n = 582 AN and n = 365 HC participants; and n = 93

studies of SUD with n = 9106 SUD and n = 3028 HC participants. In particular, we

consider how WM load/capacity may support the neural process of excessive epistemic

foraging (cognitive sampling of the environment to test predictions about the world) in

AN that reduces distraction from salient stimuli. We also consider the link between WM

and cognitive control in people with SUD who are prone to ‘jumping to conclusions’ and

reduced epistemic foraging. Finally, in light of our review, we consider WM training as a

novel research tool and an adjunct to enhance treatment that improves cognitive control

of impulsivity.

Keywords: working memory, cognitive control, anorexia nervosa, substance use disorder, neuropsychology,

neural, genetic, working memory training

INTRODUCTION

‘Can we learn about the treatment of substance use disorder (SUD) from the neural correlates of
anorexia nervosa (AN)?’, is a question that has recently been debated in line with a spectrummodel
of impulse control (Figure 1) (Brooks et al., 2012b; Brooks, 2016). The previous articles debated a
model where healthy impulse control (‘normalcy’) is in the middle, excessive control (e.g., AN) is
at one extreme, and lack of control (e.g., binge eating, SUD) is at the other extreme (Volkow and
Baler, 2015). The previous articles emphasized a theory emerging in the eating disorder literature
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FIGURE 1 | The impulse control spectrum model of eating disorders by Brooks et al. (2012b, 2016). This model describes the common comorbid

neuropsychological traits, some neural and genetic markers of restraint versus impulsivity, as related to eating behavior. SUD is regarded, based on studies reviewed

in this paper, to correspond to similar processes as binge eating disorder (Volkow and Baler, 2015), at the opposite end of the spectrum to restricting anorexia

nervosa. Normalcy – or normal appetite/impulse control – is deemed to be in the middle of the spectrum. OCPD, obsessive-compulsive personality disorder;

DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; MPFC, medial prefrontal cortex; ACC, anterior cingulate cortex; COMT,

catechol-O-methyl-transferase; 5HT2A, 5-hydroxy-tryptophan-2A (serotonin receptor 2A gene); BDNF, brain derived neurotrophic factor. Of note: anxiety is

hypothesized to be experienced when the system is imbalanced.

that increased working memory (WM) capacity may underlie
excessive cognitive control in AN. Increased WM capacity,
according to the previous articles, may manifest as cognitive
rumination, excessive attention to detail (e.g., ‘epistemic
foraging’), local versus global cognitive processing and strategies
that remain rigidly in mind for increasingly complex and
detailed eating disordered thoughts (Kothari et al., 2013) toward
future goals that are not certain to be achieved (e.g., about
shape, weight, eating, and body image). The previous articles
further suggested that increased WM capacity may contribute
to altered neurophysiology and the maintenance of restraint
of appetite in AN (which also appears protective against the
development of SUD, see Kaye et al., 2013b). At the opposite
extreme of an impulse control spectrum, it is proposed that
people with SUD have a reduced WM capacity and a lack
of cognitive control over impulses to consume substances
and a proneness to ‘jumping to conclusions,’ coinciding with
disrupted dopaminergic transmission in the mesolimbic pathway
(Everitt and Robbins, 2016). Similarly, adults who have been
consistently obese for 5 years compared to those who have

been consistently lean show deficits in WM performance and
smaller prefrontal cortex brain volume (Brooks et al., 2013).
Intriguingly, cognitive control of appetite in AN can itself
become rewarding, rigid and deeply ingrained, switching from
deliberative and recreational (e.g., occasional dieting) to habitual
and compulsive, hijacking dopaminergic networks in the brain
akin to the addiction process (Everitt, 2014; O’Hara et al., 2015).

It is against this background that the present systematic review
of AN and SUD aims to progress the theoretical perspective posed
by the impulse control spectrum model (ibid), with a structured
review of the neurobiological substrates of WM processes (e.g.,
neuropsychological, neural, and genetic). In line with the aim of
systematically reviewing, the literature for comparison of AN and
SUD to support the previous theoretical debate (Brooks et al.,
2012b; Brooks, 2016) we provide an introduction summarizing
the neural processes of normal WM proposed by model of
Baddeley and Hitch (1974). To progress the basic tenets of
the WM model, we additionally summarize two contemporary
theories related toWM, namely GlobalWorkspace Theory (Baars
et al., 2013) and Bayesian Probabilistic Interference (Nilsson,
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1986; Friston, 2012). After introducing some of the latest
neuroscientific theories of WM and processes related to cognitive
control, we then systematically review findings regarding WM
and cognitive control in AN and SUD – populations that
underpin the major tenets of the impulse control spectrummodel
(ibid). We do this to examine and contrast how WM might
play a role in variations of cognitive control in these differing
populations. Finally, we end by suggesting potential mechanisms
underlyingWM training as a novel research tool and an approach
to improving treatment for impulse control disorders. For a
summary of systematically reviewed publications of AN and
SUD, see Supplementary Tables S1, S2.

Inclusion/Exclusion Criteria for
Systematic Review of AN and SUD
Studies
See Supplementary Table S3 for PRISMA diagram of the
systematic review flowchart.

To conduct a structured review of the role of WM in
cognitive control associated with AN and SUD we used the
following search inclusions and exclusions as below. Of note,
we do not provide a systematic review of WM and cognitive
control in healthy controls, given that since the introduction of
the WM model by Baddeley and Hitch (1974), there has been
an explosion of studies, theories and opinions using various
terms synonymous with cognitive control, including cognitive
inhibition, affect regulation, self-regulation, top-down control
and cognitive–emotion interaction. As such, some contemporary
theories of healthy WM are introduced, and thereafter studies
are systematically reviewed that measure WM in AN and SUD
in line with the opposing extremes of the impulse control model
described in Figure 1.

Consulting PubMed, Medline, Science Direct, and manual
searches of publication reference lists, we used the following
search terms for inclusion in the systematic review of AN and
SUD studies: anorexia AND working memory anorexia nervosa
AND working memory; anorexia AND working memory AND
cognitive control anorexia nervosa AND working memory AND
cognitive control; substance use disorder AND working memory;
substance use disorder AND working memory AND cognitive
control. Of note, we only included AN and SUD (and not,
for e.g., ‘eating disorders’ or ‘addiction’) to search for those
specific populations we are considering at the extremes of an
impulse control spectrum model. Our aim is to systematically
review the role of WM in cognitive control in AN and SUD.
Exclusion criteria were: systematic reviews/meta-analysis and
theoretical/opinion/perspective articles (although some of these
articles are referred to in our discussions of the empirical
work); articles not written in English; articles measuring other
executive functions but not WM; articles where AN/SUD
was comorbid/secondary to major mental/neurological disorder
(e.g., schizophrenia/cognitive decline associated with seropositive
HIV/fetal alcohol syndrome/bipolar disorder); articles within the
last decade – January 2010 – present: August 2017 (to include
recent neuroscientific literature). As such, we found n = 15
studies that directly measured WM and cognitive control in AN,
and n = 93 studies in SUD.

In order to contextualize the findings of the systematic review
of studies examining WM and its role in cognitive control in
AN and SUD, we first provide an overview of theories and some
empirical studies in the healthy human brain.

THEORIES OF WORKING MEMORY AND
COGNITIVE CONTROL IN THE HEALTHY
HUMAN BRAIN

The major suggestion, or ‘red line’ throughout this article is
that WM capacity may not be limited, as traditionally posited
by Miller (1956) by the “magical number seven, plus or minus
two” items that can be remembered. Rather, that WM capacity
can ultimately be widened, deepened or more flexibly developed
for the improved cognitive control of impulsivity with the
employment of repetitive WM strategies. It has been previously
shown that control of impulsivity – by way of keeping future
goals in mind when making decisions in the face of internal
and/or external salient, often rewarding/arousing distractions –
Yantis (2000) is fostered by dual processes associated with
executive functions such as WM (Bechara, 2005). Repetitive and
increasingly complex or difficult engagement of WMwe propose,
may alter neural processes that ultimately alter cognitive control
of impulsivity in those who would be broadly considered to have
impulse control disorders – such as those with AN (excessive
control) or SUD (weakened control). This thinking is in line with
the dual process model of cognitive control, whereby cold, slower,
reflective, top-down, conscious, explicit executive functions are
utilized to exert moderation over hot, faster, reflexive, bottom-
up, unconscious, implicit arousal responses (Bechara, 2005;
Kahneman, 2011; Sofuoglu et al., 2016). It has been known for
decades that a threshold of prefrontal cortex activation is needed
for effective modulation of bottom-up processes and is associated
with WM (e.g., Goldman-Rakic, 1995, 1998). The top-down
cognitive control of such bottom-up processes could be regarded
as “free won’t,” or conscious veto (Wegner, 2002) in response
to an automatic readiness potential in the brain (perhaps akin
to impulsivity) occurring up to half a second prior to conscious
experience (Libet, 1985). The employment of a conscious veto, we
argue, might be supported by WM processes that translate into
action tendencies (Eimer and Schlaghecken, 2003), behavioral
control and memory retrieval suppression (Anderson et al.,
2016). However, WM processes, which we consider in this article,
may be dysfunctional and lead to psychiatric disorders such as
AN and SUD.

The Working Memory Model (Baddeley
and Hitch, 1974)
In an attempt to highlight the mechanisms that may initiate
impulse control, involving an interplay between bottom-up,
non-conscious processes, and top-down, conscious cognitive
processes in the healthy human brain, we turn to a neurocognitive
description of the WM model by Baddeley and Hitch (1974)
(Figure 2). In this model, a central executive (which is not in itself
synonymous with consciousness or cognitive control, but rather
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FIGURE 2 | (A) Neurobiological depiction of the WM model. Red square represents the prefrontal cortex (in orange) and the central executive; left blue square

represents the language network underling the phonological loop, namely speech production (Broca’s area in the frontal cortex) and speech comprehension

(Wernicke’s area in the temporal cortex); the middle blue square represents the visual network underlying the visuospatial sketchpad and semantics, incorporating

the dorsal (“where”) and the ventral (“what”) pathway; the right blue square represents the episodic buffer and short term memory, supported by activation of the

hippocampus. Prefrontal cortex image from Wikimedia courtesy of Gray (1918): Brodmann areas 8 = primary motor cortex (eye fields), 9 = dorsolateral,

10 = frontopolar, 11 = orbitofrontal, 44/45 = inferior frontal (Broca’s area), 46 = dorsolateral, 47 = orbitofrontal. Broca’s/Wernicke’s area image from Wikimedia

courtesy of Anatomy and Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/; Dorsal and ventral visual stream image from Wikimedia courtesy

of Anatomy and Physiology, Connexions Web site; Hippocampus image from Wikimedia courtesy of Gray, 1918. (B) The original WM model by Baddeley and Hitch

(1974), reproduced via Wikimedia.

an interplay between systems), residing within prefrontal cortex
networks presides over what are termed slave systems. These
slave systems, according to the model, are tripartite, interacting
compartments known as the phonological loop (language),
visuospatial scratchpad (visual semantics), and the episodic buffer
(short term and episodic memory). These three WM subsystems
and their neurobiological substrates will now be considered in
more depth.

Firstly, the phonological loop, which may support cognitive
ruminations, encompassing the articulatory loop and acoustic

store, involves repetitive, conscious mental rehearsal strategies
that promote the consolidation of beliefs (e.g., mantras),
incorporating a dual network, namely speech production of
Broca’s area in the frontal cortex (articulatory loop) and speech
comprehension of Wernicke’s area in the temporal cortex
(acoustic store). Secondly, interacting with the phonological
loop are the dual visual semantic networks, namely the
dorsal and ventral visual streams for action and perception
(Goodale and Milner, 1992), or the “where” and the “what”
pathway (Mishkin and Ungerleider, 1982), respectively. The
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dorsal “where” stream is primarily sensory, and follows a
path from area V1 of the primary visual cortex (which can
be activated by non-consciously processed stimuli, see Brooks
et al., 2012c) to the parietal cortex, enabling a person to
visualize the self-relevance of belief systems in time and space.
Of note, it is traditionally the frontoparietal network that
activates during WM functional magnetic resonance imaging
(fMRI) studies (Rottschy et al., 2012). Conversely, the ventral
“what” stream follows a path originating in V1 to the
temporal auditory cortex (incorporating Wernicke’s area), with
connections to the interoceptive (insular cortex) and episodic
memory (hippocampal) regions, giving visual perception a
comprehendible, concrete visual form in the mind. Thirdly, the
episodic buffer can also be activated by non-conscious stimuli
(Brooks et al., 2012c) and interacts with the phonological loop
and visual semantic networks via the hippocampal-amygdala
network residing close to Wernicke’s area in the medial temporal
cortex. The hippocampal-amygdala network is integral to the
mesolimbic reward/motivation pathway and interactions with
prefrontal cortex, particularly in terms of building saliency
and priority maps that influence overt and covert attentional
systems (Zelinsky and Bisley, 2015). Poignantly, accumulating
neurobiological evidence in animals and humans demonstrates
direct prefrontal – hippocampal neural circuitry supporting the
top-down modulation of bottom-up processes (Anderson et al.,
2016). Furthermore, non-conscious processing of salient visual
stimuli originating in V1 and the dopaminergic mesolimbic
pathway, may occur up to half a second prior to conscious
action tendencies (Libet, 1985), which may shed light on the
sequence of activations of these sub-systems of WM in response
to stimulation (Figure 3).

Baars’ Global Workspace Theory (Baars
et al., 2013)
Drawing on the Global Workspace Theory (Baars et al.,
2013) can help to understand how the central executive of
the WM model might preside over these slave systems in

FIGURE 3 | Libet’s half-second study. External stimulus of the cortex and

internal experience. At least 500 ms was needed of cortical stimulation before

subjective experience.

order to orchestrate conscious cognitive control of distracting
stimuli. The central executive could also be related to the
executive control network (ECN) that functions antagonistically
to the default mode network (DMN). The ECN is usually
related to externally focused goal-related cognitions, whereas
the DMN reflects introspection, day-dreaming, and general self-
monitoring. In brief, the Global Workspace Theory posits that
the updating of conscious perception of fluctuating internal
(related to DMN) and external (related to ECN) stimulation
(e.g., under conditions of uncertainty) emerges from backstage
non-conscious processing. In other words, the conscious stage
accommodates, or receives signals from transient actors (of
various sensory modalities, e.g., auditory, tactile, and visual) that
are guided by a) priority maps and context setting about the
self, world, and others (e.g., Zelinsky and Bisley, 2015; Trask
et al., 2016) that may over time become unconscious, and (b) by
an unconscious audience (self-precepts, automatisms, memories,
and language). Recent functional connectivity analyses (e.g., hub
detection and network-based statistics) have provided support
for the Global Workspace Theory, demonstrating how functional
networks in the brain reorganize according to higher cognitive
loads, particularly during the n-back WM task (Finc et al., 2017).
In particular, it appears that network modularity decreases as
cognitive load (on the n-back WM task) increases; specifically,
far-reaching network hubs increase but local hubs decrease in
conjunction with greater global connectivity with the DMN
(Finc et al., 2017). These most recent findings are pertinent
in the consideration of the role of WM in cognitive control,
suggesting the wider recruitment of backstage, non-conscious
neural processes with increasing cognitive demand.

Bayesian Probabilistic Inference or ‘The
Bayesian Brain’
Progressing the GlobalWorkspace Theory, Bayesian Probabilistic
Inference, or the Bayesian brain (Nilsson, 1986; Friston, 2012)
follows three main principles in terms of how the central
executive of the WM system, driven by unconscious backstage
processes, may guide decisions under conditions of uncertainty.
Firstly, activation of the neural networks within the prefrontal
cortex (e.g., anterior cingulate and medial prefrontal) and
hippocampus (which supports non-conscious, episodic, and
salient memories) likely conform to the likelihood principle.
In other words, calculating prediction error and inferring
(with generative models) the evaluation of current experiences
(interoceptive and exteroceptive) with prior experience (“have I
seen it before?”). Secondly, neural systems within the prefrontal
cortex (e.g., dorsomedial and orbitofrontal), insular cortex, and
basal ganglia (e.g., ventral striatum, hippocampus, and amygdala)
process the saliency of stimuli to derive frequentism or in other
words, familiarity, by merging prior experience with current
beliefs about the stimulus (“did I like it before?”). Finally,
Bayesianism confers belief systems, perhaps via activation of
the dorsolateral prefrontal cortex (DLPFC), visuospatial and
language networks, with frequency of exposure to a certain event
in order to update predictions and action tendencies the presence
of uncertainty (“how should I respond again now?”).
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With the processes of the Bayesian brain and Global
Workspace Theory combined, there occurs an epistemic foraging
for information (sampling of intrinsic and extrinsic stimuli) until
the best prediction about the uncertain future based on prior
beliefs while reducing error and free energy, is found (Friston
et al., 2015). Relating epistemic foraging to excessive cognitive
control, as seen for example in AN, could reflect heightened
ruminations, local versus global thinking and attention to detail
(Kothari et al., 2013) that support the updating of prior, rigid
cognitive models concerning eating, weight, shape, and food
(Dell’Osso et al., 2016). Conversely, in studies measuring the
‘jumping to conclusions (JTC)’ bias – indicative of less epistemic
foraging and reduced cognitive load – people with AN do not
show such a bias (Wittorf et al., 2012; McKenna et al., 2014).
Whereas, those with JTC bias have reduced epistemic foraging,
collecting less information to arrive at a decision, which is linked
to WM deficits and delusional thinking (Garety et al., 2013).
As such, people with SUD, who are at risk of delusional and
psychotic disorder, usually behave in a habitual, model free
manner and ‘jump to conclusions’ (Wittorf et al., 2012; Voon
et al., 2015). Considering the healthy brain for now, the transient
stage of WM and the conscious illusion of cognitive control,
presiding within PFC circuits and interacting with lower order
circuits, is consciously experienced as a deliberative, generative
inference (particularly if prediction error/free energy is high)
that shapes predictions about future events/goals (Schwartenbeck
et al., 2015). This is particularly perceived if cognitive load is
high, forcing the brain to epistemically forage for a conclusion
that solidifies or updates a prediction. Our brains measure the
degree to which our predictions about uncertain events are
in error, taking more measurements that are held in mind by
delay interneurons (see below) for accurate updating of our
prior beliefs. This dynamic updating is experienced consciously
and is solidified in episodic memory (which ultimately becomes
unconscious) to build our internal (sub)optimal cognitive
models.

Neural Processes of Working Memory in
the Healthy Human Brain
Often studies of WM report insignificance in behavioral
performance between healthy control groups and mental
disorder populations, but when including brain imaging
measures in a study, significant neural differences can often
be found (Clark et al., 2017), and for review see below.
This might suggest that the dynamic nature of the brain
and neuroplasticity mechanisms support the development of
compensatory processes that adapt to the unique experiences of
the individual and which may, in turn, develop into entrenched,
habitual mental disorder if not repeatedly challenged. Repetitive
storage, encoding, and retrieval of processed stimuli (“have
I seen it before, did I like it before, how should I respond
again now?”) within the cortico-parietal-hippocampal circuitry
underlies the detection of patterned activity and coincidental
events (Basu and Siegelbaum, 2015). Such repetition underlies
the dynamic mechanisms of Bayesianism as described above,
and may be the process by which WM fosters neuroplasticity

and alterations to the subjective experience of cognitive control.
This innate neural learning mechanism could be harnessed to
improve mental disorder (Lewis, 2015). As a starting point, basal
ganglia processes may be at first non-consciously activated via
the thalamus/brain stem, V1 and projections onto amygdala
and striatal systems that register the saliency of a stimulus
(“have I seen it before?”), particularly in terms of Pavlovian
conditioning involving neocortex (Chau and Galvez, 2012;
LeDoux, 2014). Such non-conscious saliency processes occur
backstage, as readiness potentials – at least half a second before
they decay (see discussions on meta-neuronal assemblies that
register neuronal decay and the link to consciousness: Greenfield,
2017) and are registered by conscious systems in the higher
order networks (Libet et al., 1979) (Figure 3). On this basis,
subsequent “feeling” occurs (“did I like it before?”) through
conscious cognitive processing of neural raw materials (LeDoux,
2014).

The interface between backstage processes and conscious on-
stage processes, in other words cognitive–affective interaction,
likely begins between the basal ganglia (e.g., amygdala,
hippocampus, and striatum), anterior cingulate cortex (ACC)
and via direct connectivity to the DLPFC for prediction error
detection, reinforcement learning, and Bayesian updating about
how to respond (Garrison et al., 2013). The ACC, which is
involved in the prediction error detection network (Shen et al.,
2015) contributes to the larger mesolimbic pathway, of which the
saliency network of the amygdala-hippocampal-insula subsystem
is a part and can be activated by non-conscious stimuli (Brooks
et al., 2012c; Meneguzzo et al., 2014). Furthermore, it is intriguing
to consider that non-conscious episodic memories via the slave
systems (e.g., amygdala-hippocampal) can be triggered by stimuli
that have been frequently encountered and are therefore salient
and specific to the individual, underlying the qualitative nature
of adaptive behavior (Desmedt et al., 2015).

The interference effects of non-conscious backstage salient
processes on WM in healthy adult participants has been
examined by manipulating the presentation of different types
of subliminal images (appetitive, aversive, and neutral) while
varying the levels of cognitive load (Uher et al., 2014). The
rationale for the study was to probe how cognition and
emotion interact, in terms of modulating affective arousal and
cognitive engagement, since it is proposed by various groups
that emotion and cognition compete for limited resources in the
brain (Desimone and Duncan, 1995; Lavie, 2000; Pashler et al.,
2001; Pessoa, 2009), particularly in the prefrontal-parietal cortex
(Jaeggi et al., 2003; Rottschy et al., 2012). Against this background,
in this study we showed a scrambled mosaic image on screen that
functioned as a backward mask, commonly used in subliminal
studies (Figure 4). The backward mask was presented directly
after a 20-ms presentation of an aversive (e.g., bloody bodies),
appetitive (e.g., high calorie food), or neutral (e.g., utensils)
image from the International Affective Picture System (IAPS)
(Lang et al., 1996) that were previously rated by independent
volunteers in terms of pleasantness, aversion, salience, visual
complexity, and recognizably. During the presentation of these
subliminal stimuli to a group of healthy adult men and women
(mean age: 25 years), we engaged participants in the easier

Frontiers in Psychology | www.frontiersin.org 6 September 2017 | Volume 8 | Article 1651

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Brooks et al. Working Memory and Cognitive Control

FIGURE 4 | (A) Schematic diagram of the backward masking technique. A salient image (e.g., food) is presented for 23 ms, prior to a mosaic screen. The mosaic

functions as a backward mask to interrupt the processing of the salient stimulus rendering it subliminal. Adorned on the mosaic image is a red letter, which changes

during consecutive cycles, and represents either a target or non-target image during the N-back task. For 1-back, the target letter is the same as the previously

presented letter, whereas for 2-back the target letter is the same as the letter presented two letters previously. Image courtesy of Dr. Samantha Brooks’ Ph.D. thesis

(Published via University of London, King’s College, London, June 2010). (B) Using a schematic diagram of the classic WM model by Baddeley and Hitch (1974),

reproduced via Wikimedia, to hypothesize as to the sequence of events that is associated with competitive interference during subliminal priming when cognitive load

is low, and reduced competitive interference when cognitive load is high in healthy subjects (see Uher et al., 2014). (1) During the subliminal presentation of arousing

stimuli (e.g., food and aversive image), which have been frequently encountered before (e.g., food) or that evolutionarily we are primed to find salient (e.g., aversive

image of bloody bodies), the hippocampus is activated after the visual stimulus, via V1 and thalamus has increased dopamine release in the mesolimbic pathway.

Direct connection to the prefrontal cortex from the hippocampus ensures that cognitive systems are primed to attend to this stimulus for further processing.

1-back and more difficult 2-back versions of the N-back WM
task (Kirchner, 1958). In conjunction with our hypotheses, we
found that when WM load was low, competitive interference
between cognitive (e.g., completing the task) and affective
processes (e.g., neural responses to subliminal arousing stimuli)
on prefrontal cortex attentional systems was high (e.g., there was
an increase in errors). However, increasing the cognitive load
of the WM task appeared to attenuate the interfering effects
of subliminal arousing stimuli (of both positive and negative
valence).

Our data complemented findings by others showing that
increasing the cognitive load can reduce the interference caused
by consciously processed emotional distracters (Van Dillen and
Koole, 2009; Van Dillen and Derks, 2012). Our findings were
particularly interesting given that a post-experiment forced

choice test confirmed that all participants were unaware of
the subliminal interfering images during the study. From this
we suggested that affective interference does not directly relate
to conscious evaluation of the current cognitive activity (e.g.,
metacognition), and that a top-down regulatory mechanism
within the prefrontal cortex appears to exist that is not
reliant on conscious metacognition. Thus, it might be that
hippocampal mechanisms in response to subliminal stimuli
are activated first by the dopaminergic mesolimbic pathway
via area V1, such that WM processes (visual semantics and
language) are distracted if cognitive load is low (1-back).
However, when cognitive load is high (2-back), the central
executive might bias visual semantic and language systems
in favor of prior goals (e.g., completing the task) such that
hippocampal and salient environmental activation does not
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impinge on WM processes. For a schematic illustration, see
Figure 4.

In line with our findings above (Uher et al., 2014), the
central executive component of the WM model, particularly
involving DLPFC-ACC-insula coupling (Fang et al., 2016) may
regulate non-conscious stimulation of the hippocampus to
reduce distraction when cognitive engagement is high (e.g.,
excessive epistemic foraging). Specifically, a rostral (bordering
the evaluative OFC) versus caudal (bordering the error detecting
ACC) involvement of the DLPFC may ensue according to low
versus high cognitive load, respectively (Rottschy et al., 2012),
and may be a robust model of cognitive control to consider for
excessive cognitive control in AN. Similarly, this may support the
notion of WM training to strengthen a person’s ability to evoke
WM at a higher load/capacity in order to prevent distraction.
However, interactions between lower order non-conscious slave
systems and higher order ECNs are also mediated by genetic and
epigenetic factors that underlie traits and differing thresholds of
cognitive control and WM capacity that we consider next.

Genetic Mechanisms Underlying the
Working Memory Process
In terms of the genetic influences on WM processes, particularly
concerning neuroplasticity, it is useful to consider expression
within some of the main cellular signaling pathways that are
implicated, including dopaminergic (D1–D5 receptors, DAT, and
COMT), glutamatergic (BDNF and NMDA) and GABAergic
(inhibitory interneuron) systems (Karlsgodt et al., 2011).

Dopaminergic

The link between dopamine and WM, particularly involving the
DLPFC and related neurocircuitry and the ability to generate and
hold in mind visual representations in the absence of external
stimulation, has long been established (e.g., Goldman-Rakic,
1998). Expression of D1 receptors are predominantly observed
in the prefrontal cortex, and D2/D3 receptors in the striatum
(Charuchinda et al., 1987; Lidow et al., 1991). The link between
expression of D1 receptors and WM performance follows an
inverted U-shape, whereby low levels of D1 receptors in the
prefrontal cortex are associated with aging, neurodegenerative
disease (e.g., Parkinson’s and Alzheimer’s) and poorer WM
performance, while high levels of D1 receptors are associated with
impulsivity, stress, psychosis and impaired WM function (Abi-
Dargham, 2003; Vijayraghavan et al., 2016). D2/D3 receptors
by contrast are predominantly found in the basal ganglia and
have been linked to episodic memory and also drug craving
(Morales et al., 2015; Nyberg et al., 2016), and upregulation of
D2 receptors in the basal ganglia is observed following WM
training in young adults (Söderqvist et al., 2014). Furthermore,
activation of D4 receptors in the medial prefrontal cortex is
linked to biasing of decision-making under aversive conditions
(Floresco and Magyar, 2006). Finally, reduced D5 receptor levels
in the prefrontal cortex are associated with downregulation of
NMDA receptors in the hippocampus and diminished long-term
memory, but not specifically WM performance (Moraga-Amaro
et al., 2016), suggesting that the D5 dopamine receptor system
may contribute to Bayesian updating and consigning information

from epistemic foraging to unconscious memory, which might
be considered an important part of the loop of repetitive WM
functioning.

The role of single nucleotide polymorphisms (SNP) on the
catechol-O-methyltransferase (COMT) gene in WM function
is well documented and may be associated with the inverted
U-shape relationship between dopamine levels andWM function
mentioned above (Schacht, 2016). COMT is an enzyme (or
catabolite) that degrades dopamine, rendering it inactive, and
is particularly important in regions that have low presynaptic
dopamine transporter (DAT) expression, such as the prefrontal
cortex (Matsumoto et al., 2003). Specifically, COMT val158met
SNP (rs4680) confers variation in COMT efficacy and dopamine
tone, especially in relation to D2 regulation of receptors
downstream in the basal ganglia. Individuals homozygous for
the valine COMT allele, which more rapidly degrades dopamine,
have significantly lower prefrontal cortical dopamine, which
is linked to impulsivity, whereas those homozygous for the
methionine allele display a slower degradation of dopamine,
which is linked to higher levels of cortical dopamine and
schizophrenia (Schacht, 2016). Thus, optimal degradation of
dopamine within the prefrontal cortex, following optimal release
of dopamine from basal ganglia likely supports effective WM
processing.

Glutamatergic

The genetic expression of brain derived neurotrophic factor
(BDNF) is linked to glutamatergic pathways and plays a crucial
role in neuroplasticity by mediating changes in cortical thickness
and synaptic density, particularly within the corticolimbic
pathway, with higher serum levels of BDNF associated with
better WM (Håkansson et al., 2016). Moreover, the synergistic
interactions between neuronal activity and synaptic plasticity
(and receptor upregulation) by BDNF underline it as an essential
regulator of cellular processes for WM, particularly hippocampal
long-term potentiation (Lu et al., 2014). Similarly, there is
strong evidence that BDNF is a good candidate for experience-
dependent modulation of neural systems underlying learning and
memory (Korol et al., 2013), in line with the Bayesian brain
process described above. In line with this, a study examined
367 healthy elderly Swedish men and women for the BDNF
functional rs6265 SNP, WM and brain volume, and found that
the Met allele was associated with better WM performance
and larger cerebellar, precuneus, left superior frontal gyrus
and bilateral hippocampal volume, and smaller brainstem and
bilateral posterior cingulate volume (Brooks et al., 2014a).
WM ability, and the efficacy of repetitive training to evoke
neuroplasticity changes, particularly within the basal ganglia
networks, may be significantly associated with BDNF expression,
such as upregulation of dopaminergic mesolimbic receptors
and subsequently reduced levels of dopamine arriving at the
prefrontal cortex from the basal ganglia. This may in turn be
reflected in volumetric changes in the basal ganglia and improved
levels of impulsivity in those with SUD (Brooks et al., 2016).

The N-methyl-d-aspartate receptor (NMDAR) is
glutamatergic and expressed in relation to the gene dystrobrevin
binding protein-1 (dysbindin, or DTNBP1) in layer III-V
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excitatory pyramidal cell circuits of the DLPFC that are of
primary importance when considering the genetic influences on
WM function (Karlsgodt et al., 2011; Arnsten and Wang, 2016).
Specifically, dysbindin contributes to delay interneurons found in
DLPFC layers that continue to fire across time in the absence of
direct stimulation, which are excited via NMDARs (Wang et al.,
2013) and may contribute to WM capacity. Moreover, spatial
tuning of delay cells within the DLPFC is cultivated via lateral
inhibition from GABA interneurons (Goldman-Rakic, 1995),
which differs to other classical circuits, for example those found
in occipital cortex V1 that predominantly activate feed-forward
as opposed to lateral inhibition (Gabernet et al., 2005).

Gamma-amino Butyric Acid (GABA)

Antagonistically to the excitation of NMDAR via glutamatergic
pathways, effective WM function additionally involves activation
of inhibitory GABA interneurons (Goldman-Rakic, 1995). It is
suggested that a discrete balance between excitatory NMDA
and inhibitory GABAergic neurons in the PFC allows for the
specificity of the WM trace during repetitive cognitive tasks
(Garavan et al., 2000), and that disruption to oscillatory activity
in the gamma-band range can jeopardize WM performance
(Lewis and Moghaddam, 2006). Thus, against this background,
gene expression, particularly involving layer III-V pyramidal cells
within the prefrontal cortex that rapidly and reversibly alter the
strength of synaptic connections underlying dynamic network
connectivity likely contribute to repetitive Bayesian dynamic
updating and improvements to WM (Arnsten and Wang, 2016).

Epigenetic Effects

Alongside genetic linkage studies into WM function,
accumulating evidence highlights the link between repetitive
environmental stimulation, as well as epistemic foraging
(particularly when exposed to significant stressors and during
memory formation) and epigenetic effects, which are defined
as heritable changes in gene transcription and/or phenotypic
alterations that do not follow changes in DNA sequences
(Jablonka, 2012). Most commonly studied epigenetic effects are
modifications of four histones (H2a, H2b, H3, and H4) present
in chromatin (Gelato and Fischle, 2008) and DNA methylation
(Smith and Meissner, 2013) (for extensive review of these two
processes, see Cadet, 2016). The epigenetic effects of WM are of
fundamental importance in terms of how the mind can change
in response to unique environment stimulation (e.g., repetitive
WM usage and/or training) and in turn, how these changes
impact future interactions with the environment (for extensive
review of neuroepigenetics of memory, see Mikaelsson and
Miller, 2011). For example, memory storage, consolidation and
retrieval require long-term increases in synaptic strength that are
supported by transcription and chromatin modification and that
underlie neuroplasticity (Mikaelsson and Miller, 2011). The first
animal studies of the epigenetic effects of memory formation (for
taste preference) demonstrated chromatin-related changes in the
insular cortex (Swank and Sweatt, 2001) and the hippocampus
(for fear learning) (Levenson et al., 2004).

Specific epigenetic effects of early life deprivation (social
isolation) on WM-related brain structures in rats has been

shown to increase H3 acetylation at the BDNF gene and BDNF
protein expression, specifically in the medial prefrontal cortex,
and decreased BDNF mRNA levels, H3 acetylation of the BDNF
gene and BDNF protein expression in the hippocampus (Li et al.,
2016). Similarly, the BDNF SNP rs6265 (Val (66) Met), which
creates or abolishes a CpG dinucleotide for DNA methylation,
is associated with modulation of prefrontal cortex activation,
impaired WM accuracy and increased methylation in ValVal
subjects, but improved WM and reduced methylation in ValMet
subjects (Ursini et al., 2016). Epigenetic effects in terms of
DNA methylation in the MB-COMT promoter gene, which
is associated with WM function, have recently been found to
correlate with left DLPFC activation during the performance of a
WM task in humans (Walton et al., 2014). Furthermore, early life
deprivation has been shown to negatively affect cortical GABA
function in adult life, including impaired prefrontal expression
of enzymes required for GABA synthesis (Labouesse et al., 2015),
which likely has an adverse effect on WM. Epigenetic effects are
associated with WM as summarized above, and play a major
role in the development and maintenance of psychiatric disorder
(Karsli-Ceppioglu, 2016; Luoni and Riva, 2016).

Having now summarized theories of WM, as well as some of
the neuropsychological, neural and genetic processes underlying
WM in the healthy human brain, we now systematically review
studies of WM in AN and SUD – psychiatric populations
considered to be at opposing ends of an impulse control spectrum
(Figure 1) (Brooks et al., 2012b; Brooks, 2016).

ANOREXIA NERVOSA, WORKING
MEMORY, AND COGNITIVE CONTROL

Neuropsychological and Clinical
Considerations
The current systematic review has found that to date 16
studies (published between 2010 and 2017) have examined WM
performance in AN. In a previous review of all studies examining
WM to date (the first study in 2002), it was found that 45% of
studies showed patients with AN to have betterWMperformance
than healthy subjects or those who binge; 18% reported worse
performance and 37% reported no difference (Brooks, 2016).
While the majority of studies in the previous review report
superior performance, the heterogeneity of findings is likely due
to the mixing of eating disorder subtypes, differing durations of
illness and experiments that test different components of WM
(e.g., verbal versus visuospatial). For example, varying degrees
of restriction versus binge eating concomitant with switching
between subtypes of ED over the course of illness can influence
WMability, with those with AN sometimes having better, but also
worse WM ability (e.g., Israel et al., 2015; Weider et al., 2015).
A longer duration of illness can also influence WM function
(Dickson et al., 2008; Pruis et al., 2012; Lao-Kaim et al., 2014),
but often WM ability does not correlate with clinical eating
disorder measures (e.g., Seed et al., 2002; Fowler et al., 2006;
Hatch et al., 2010; Nikendei et al., 2011), suggesting that clinical
symptoms during chronic eating disorder are likely transient
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and secondary to the core cognitive disturbances in those who
develop ED that often manifest during adolescence (Lena et al.,
2004).

Since the last review in 2016, an additional six studies have
been found that examined WM in AN (Phillipou et al., 2015;
Biezonski et al., 2016; Giombini et al., 2016; Bentz et al., 2017;
Ritschel et al., 2017; Solstrand Dahlberg et al., 2017). Of these six
studies, none reported better WM performance in AN compared
to HC; some reported normalization of WM function after
treatment such as cognitive remediation therapy (CRT) and in-
patient treatment (Castro-Fornieles et al., 2010; Giombini et al.,
2016), whereas others show that abnormal function remains
on recovery (Ritschel et al., 2017). This leaning toward the
reporting of worse WM performance in AN may reflect the
fact that there may be heightened WM capacity in AN but that
this is utilized primarily for the exercising of detailed, rigid,
complex cognitions about eating-related concerns. Furthermore,
contemporary studies examining AN and WM now seem more
often to combine neuropsychological measures of WM with
neural measures using brain imaging techniques, whichmay shed
better light on the mechanisms involved in cognitive control.
For example, Biezonski et al. (2016) demonstrate thalamo-
cortical structural and functional abnormalities in those with
AN coincide with deficits on tasks probing WM and cognitive
control. Similarly, increased temporoparietal activation in those
who have recovered from AN, during a probabilistic learning
task suggests a trait marker for excessive cognitive control and
inefficiency to learn from unfolding new experience (Ritschel
et al., 2017). These findings are suggestive of rigid, increasingly
detailed prior beliefs (related to eating and body image) that
are supported by excessive WM function that are difficult
to alter (e.g., with cognitive therapies alone). Furthermore,
larger insular cortex volumes in adolescent females with a
new diagnosis of AN are related to significantly slower WM
reaction time (Solstrand Dahlberg et al., 2017) and may be
reflect proneness of hypersensitivity to distraction (Dickson
et al., 2008). Taken together, the recent studies suggest a
suboptimal WM performance in those with AN that coincides
with hyperactivation of brain networks associated with excessive
cognitive control and the perception of saliency (e.g., thalamo-
cortical, temporal, parietal and insula). This may support a
Bayesian brain notion that those with AN engage in excessive
epistemic foraging of intrinsic and extrinsic stimuli to strengthen
proof for generative models of future, uncertain goals (pertaining
to concerns about eating, shape, weight, and food – “I will only
eat a salad at noon”). Such excessive, chronic epistemic foraging
may foster neural changes that support habitual, rigid, attention-
to-detail style thinking that maintains AN, and that influencing
cognitive changes at the neural level (e.g., with WM training)
may improve treatment efficacy for AN. It is noteworthy that
no studies have yet, to the authors’ knowledge, examined the
(epi)genetic underpinnings of WM function and neuroplasticity
in AN.

Other research into eating disorders supports the notion of
Bayesian brain processes in the development of AN. For example,
a diagnosis of restricting AN is linked to perceived self-control
and delayed gratification in contrast to binge eaters, supporting

a transdiagnostic, spectrum model of impulse/appetite control
(Bartholdy et al., 2017). Furthermore, to support the spectrum
view of impulse control in eating disorders, AN appears to be
protective for the development of SUD (Kaye et al., 2013b).
Alongside more prominent clinical symptoms (Treasure and
Schmidt, 2013), WM is linked to core deficits, for example
that pertain to excessive appetite control by way of repetitive
cognitive ruminations. In support of this, a link has recently been
demonstrated between AN, negative affect and disease-related
ruminations (Seidel et al., 2016). This finding is in line with
recent work on the Bayesian brain by Friston et al. (2015; Peters
et al., 2017) suggesting that high levels of uncertainty in the
environment regarding future events (e.g., high prediction error,
free energy/entropy within brain processes) may lead to excessive
epistemic foraging and stress. This can be related to negative
affect/allostatic overload and to the findings of Seidel et al. (2016),
in that if people with AN are excessively ruminating on future
goals and attempts to control eating, body shape and weight,
they place themselves in a cognitively uncertain situation. This is
because, in a world where food and body images are abundant,
there is uncertainty about whether appetite suppression and
control of the body can indeed be achieved over the longer
term. The tension between uncertainty versus excessive epistemic
foraging to support prior beliefs would increase allostatic load
and result in heightened stress/anxiety, which is commonly
comorbid in those with AN. However, it may also be rewarding
to experience achievement of appetite control goals in the face of
uncertainty/abundance of food/eating/body image cues (O’Hara
et al., 2015).

Similarly, it has been demonstrated that an early diagnosis
of eating disorder during adolescence is linked to obsessive-
compulsivity regarding concerns about shape, weight, and eating
(Brooks et al., 2014b). Furthermore, the study also reported
that higher obsessive-compulsive scores correlated with slower
WM performance on the N-back task. Slower WM performance
may be indicative of an interference effect, for example, if the
brain is already engaged in ruminations about shape, weight,
and eating (triggered non-consciously by images of food). That
WM is distracted by affective stimuli in those with AN compared
to healthy, and more so as duration of illness progresses, has
been corroborated by Dickson et al. (2008). Similarly, another
study found that WM performance in adult females with AN is
only comprised by non-consciously processed images of food,
not other affective subliminal images (Brooks et al., 2012a).
Also, the interference effect observed in this study only occurred
when neural systems were engaged in a WM task that utilized
DLPFC-related processes, and not a conflict monitoring task
that utilized ACC-related networks (Brooks et al., 2012a). Taken
together, research suggests that WM function may be a feature
of excessive rumination and appetitive control in those with
AN, and that as the disorder progresses, visual and phonological
episodic memories (e.g., images of food and body) become
rigidly ingrained in the non-conscious saliency network due
to their frequent and repetitive processing, which ultimately
influences neuroplasticity processes and renders DLPFC-related
neurocircuitry function suboptimal (e.g., biased toward detailed
eating disorder cognitions).
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Neural Processes of WM in AN
Rumination and appetitive control in adolescents and adults
at risk for developing AN may at first be deliberative and
recreational (e.g., occasional dieting to achieve a visualized
weight/body-image goal), but may switch to become ingrained,
compulsive and habitual, akin to the neurobiological process
of addiction (Everitt, 2014; O’Hara et al., 2015). For example,
WM processes rely on the dopaminergic corticolimbic pathway
(Goldman-Rakic, 1998), and as such, repetition of phonological
and visual images may activate the saliency network, which
over time may lead to epigenetic changes that upregulate
dopamine receptors in line with altered dopamine levels in
the mesolimbic pathway. In neural circuitry terms, deliberative
responses appear to activate prefrontal cortex and ventral
striatal (nucleus accumbens) networks linked to incentive
salience and decisions about wanting and liking, whereas
compulsive and habitual responses switch to dorsal striatum
(Everitt, 2014; Koob and Volkow, 2016). Repetitive ruminations
in those with AN (e.g., “I will only eat salad at noon”),
from a WM model perspective, may engender the episodic
representation of images evoked by deliberative prefrontal cortex
predictive processes, such that internally generated images
are eventually furnished with a saliency akin to a concrete
object.

Additionally, AN is linked to hypoactivation in the insular
cortex – a saliency hub – in response to food images, which
is linked to reduced interoception, whereas by comparison
the exercising of restraint cognitions to be thin appears more
rewarding and addictive (e.g., “nothing tastes as good as skinny
feels,” Kaye et al., 2013a). Epigenetic effects in dopaminergic
receptor populations within the related basal ganglia network
eventually leads to withdrawal, stress, and anxiety (Koob and
Volkow, 2016) as more drug consumption – or in the case of
AN, restraint cognitions of increasing complexity and detail –
need to be exercised, as habituation ensues (Kaye et al., 2015).
However, the degree to which WM is exercised according to
restraint cognitions is likely transient, determined by current
ED subtype and may be translated into neurobiological and
epigenetic effects underlying the strength and efficiency of
neural networks supporting WM capacity. Considering the
potential neurobiological underpinnings of cognitive control
and WM in AN, one study observed that while the global
brain volume was smaller, the right DLPFC volume negatively
correlated with age (between 18 and 45 years) in healthy
adults but not in adults with a chronic diagnosis of restricting
AN (Brooks et al., 2011a), suggesting that some difference
in functionality might save the AN DLPFC from age-related
normal atrophy. With this in mind, when weighting for
BMI, the right DLPFC volume in RAN positively correlated
with restraint cognitions (as measured by the eating disorder
examination questionnaire) (Brooks et al., 2011a). While the
study was a small pilot, it is intriguing to consider that
excessive ruminations over a substantial time period (e.g.,
chronic eating disorder over approximately 30 years lifespan),
measured cross-sectionally in individuals with differing durations
of illness, may alter neural plasticity and therefore DLPFC
volume.

In this vein, numerous recent studies have linked increased
DLPFC function and related regions to WM and disease-related
processes in those with AN. For example, a study revealed
that increased neural activation during the perception of high
calorie visual food stimuli occurs in the bilateral prefrontal cortex
(including the DLPFC and ACC) in adolescents with an early
diagnosis of eating disorder, as well as adults with chronic AN
compared to patients with bulimia nervosa (Brooks et al., 2011c),
and that increased DLPFC activation positively correlates with
high obsessive-compulsive scores and slower WM performance
(Brooks et al., 2014b). Other groups have also linked WM ability
in those with restricting AN compared to healthy controls,
to greater right DLPFC activation as cognitive load increases
(Israel et al., 2015). Moreover, others have suggested that neural
activation differences during WM performance in the DLPFC
between patients with AN and controls may be distinguished
by duration of illness (Lao-Kaim et al., 2014). Also, in a recent
review of resting state functional MRI studies of AN, connectivity
deficits in corticolimbic networks pertaining to cognitive control
were implied (Gaudio et al., 2016). Similarly, a recent study by
Boehm et al. (2016) demonstrates that passive (e.g., not engaged
in a perception or cognitive task during the scan) functional
resting state connectivity was reduced between the DLPFC and
frontoparietal network in people who had recovered from AN,
suggesting that aberrant WM and cognitive control is a trait
marker for the risk of developing an ED. Similarly, increased
DLPFC activation while perceiving and responding to images
of food (e.g., “how disgusting do you find the images?”) in
recovered patients who previously had chronic AN, may not be
an indication of ‘good outcome’ (Uher et al., 2003), but rather, a
reflection that underlying core cognitive symptoms of aberrant
WM are recalcitrant. Taken together, these data suggest that the
disruptive influence of non-conscious processes on WM and
related attentional bias (Brooks et al., 2011b) increases as AN
progresses, which in turn promotes epigenetic changes within
the cognitive-affective neural interplay underlying the cognitive
control of appetite.

Genetic Influences on WM in AN
Changes in DLPFC volume as measured by MRI for example,
may translate into epigenetic effects and neuroplasticity within
prefrontal cortex networks that support WM function. In line
with this suggestion, increased volume in the DLPFC may reflect
similar findings of increased BDNF SNP rs6265 methylation in
ValVal subjects and improvedWM (Ursini et al., 2016). Increased
volume in the prefrontal cortex could also reflect epigenetic
effects within the COMT promoter gene, which is associated
with WM function and modulation of prefrontal cortex during
WM in humans (Walton et al., 2014). Similarly, prefrontal cortex
expression of enzymes required for GABA synthesis and the
function of delay interneurons may also be associated with
differential structure and function in theDLPFC (Labouesse et al.,
2015). However, according to the authors’ knowledge, no studies
have yet examined the genetic underpinnings of WM processes
in AN and the link to excessive cognitive control.

Against the background of the neurobiology of WM
mechanisms associated with AN, the genetic epidemiology of
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eating disorders has recently been reviewed (Bulik et al., 2016).
Firstly, the review highlights that all eating disorders appear
to be heritable conditions that are determined by genetic and
environmental interaction, which is pertinent to consider here,
given that repetitive ruminations about food restriction and
environmental stimuli perceived to be relevant (e.g., one’s own
shape, weight and eating in comparison to others) may alter
cellular brain processes. In this vein, while Bulik et al. (2016)
admit that as yet, genome-wide association studies (GWAS) for
eating disorders are still underpowered, the top hit (co-morbid
with bipolar disorder) for AN is on the SOX2-OT gene on
chromosome 3 (Boraska et al., 2014; Liu et al., 2016). The SOX2-
OT gene is associated with neurogenesis, and might underlie
varying degrees of neuroplasticity and the extent to which
neural circuits are rigidly set or can be modified; however,
this suggestion is currently speculative. Secondly, the review
underlines that a novel method of analysis, namely linkage
disequilibrium score regression (LDSR) has demonstrated a
strong positive genetic correlation between AN, schizophrenia
and bipolar disorder, which suggests that the common variants
cumulatively associated with schizophrenia and bipolar risk also
increase risk for AN (Bulik-Sullivan et al., 2015) – implicating
dopaminergic processes that are associated with WM. Given
the strong links between WM and cortical plasticity in those
with schizophrenia (Genevsky et al., 2010), the genetic linkage
between schizophrenia and AN further implicates WM in
pathology.

Another recent review has considered not only the genetic
epidemiology of eating disorders but also specific epigenetic
links (Yilmaz et al., 2015), which link neuroplasticity and WM
processes. Firstly, while anxiety and related disorders (e.g.,
obsessive-compulsive disorder) are highly comorbid with eating
disorders and as such genetic analyses of genes related to
serotonergic systems have been extensively studied, Yilmaz et al.
(2015) report mixed and underpowered findings. Similarly, while
there is some indication that dopamine receptor studies are
implicated in levels of binge eating and attention deficit disorder
in those with eating disorders, Yilmaz et al. (2015) suggest that
replication studies are needed. Furthermore, while leptin receptor
and melanocortin genes are associated with weight regulation,
Yilmaz et al. (2015) report no significant and consistent linkage
to those with eating disorders.

Yilmaz et al. (2015) hint that it is perhaps BDNF that holds
the most promise as an epigenetic candidate for eating disorders,
given that BDNF is involved in appetite suppression by regulating
melanocortin signaling in the hypothalamus (Xu et al., 2003),
although no strong links are currently found. Yet, it is interesting
to consider, given that the BDNF SNP rs6265, which creates or
abolishes a CpG dinucleotide for methylation, is associated with
modulation of prefrontal cortex activation in terms of improved
WM and reduced methylation in ValMet subjects (Ursini et al.,
2016). Thus, while differences in nucleotide sequence between
AN and controls may not differ significantly, it is possible that
gene expression or methylation patterns, perhaps in BDNF SNP
rs6265, may significantly vary in those with eating disorders in
relation to measures of WM capacity. Yilmaz et al. (2015) report
that due to the link with reward processes, the dopaminergic

system has been most extensively studied in terms of epigenetics
in eating disorders, which is also pertinent given the role of
dopamine in WM (Goldman-Rakic, 1998). Accordingly, there is
some indication that those with AN may have increased DAT
(SLC6A3; also referred to as DAT) mRNA expression due to
hypermethylation of the gene’s promoter region, as well as DRD2
promoter hypermethylation (Frieling et al., 2010), although this
is yet to be replicated. And at the time of writing, there has been
no convincing links between COMT epigenetic effects and eating
disorders. Taken together, given their influence on corticolimbic
circuitry, it might be that BDNF and dopaminergic epigenetic
mechanisms are most pertinent to the examination of fluctuating
WM ability and the link to cognitive control of appetite in those
with AN.

SUBSTANCE USE DISORDERS
WORKING MEMORY AND COGNITIVE
CONTROL

Neuropsychological and Clinical
Considerations
At the opposite extreme of the impulse control spectrum model
(Figure 1) are those who have reduced impulse control (e.g.,
binge eaters/SUD, Volkow and Baler, 2015) as proposed by the
dual process theory of addiction (Bechara, 2005). With SUD
(including stimulant, nicotine, opioid, marijuana, and alcohol
use) in mind, we conducted a second systematic review yielding
n = 93 studies that have examined WM and cognitive control,
between 2010 (e.g., the start of this decade) to the present (August
2017) (Supplementary Table S2). The majority of studies, n = 68
(72%) reported worse WM performance compared to healthy
drug-naïve controls or non-drug taking control groups, but it
is not clear whether WM deficits are a trait (e.g., cause) or a
state (e.g., consequence) of SUD. In attempt to probe the trait
versus state effects of SUD, researchers have examined whether
WM deficits normalize following a period of abstinence, and
in some cases, there is moderate reversal of cognitive deficits
following abstinence (Vonmoos et al., 2014). Similarly, in a
recent randomized control trial, Bell et al. (2017) reported that
abstinence during 3 months of CRT and work therapy for
outpatients with SUD was related to improved WM function
also present at 6 months follow-up. Furthermore, 3 weeks of
marijuana abstinence led to WM improvements in adolescents
between the ages of 15–19 years, but attention deficits remained
(Hanson et al., 2010). However, withdrawal from heavy substance
use (alcohol and drugs) during adolescence may lead to long-
lasting, WM deficits that are related to neurotoxicity in later
life (Hanson et al., 2011). Nevertheless, across the board, the
resounding conclusion from these studies is that WM in SUD is
deficient, but that there is some indication that deficits may not
be long-lasting and can be improved.

At the opposite end of an impulse-control spectrum, where
AN represents excessive cognitive control, conversely those
with addiction behaviors, and SUD in particular, represent low
cognitive control and impaired self-regulation (Bechara, 2005;
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Bickel et al., 2011, 2015; Volkow and Baler, 2015; Brooks, 2016;
Squeglia and Cservenka, 2017). Given that dopaminergic systems
underlying WM (Goldman-Rakic, 1995, 1998) are implicated in
addiction (Volkow and Baler, 2015), WM deficits are considered
to contribute to core pathology of addiction (e.g., Bechara,
2005). In support of this (but also in support of trait deficits)
adolescents with a family history of alcoholism have been shown
to be slower on a verbal WM task than those with no family
history of alcoholism (Cservenka et al., 2012). And generally,
those with alcohol use disorder are usually impaired on the WM
executive function domain (Chanraud et al., 2010; Bogg et al.,
2012), particularly in a Bayesian brain sense when attempting to
make decisions under uncertain conditions (Brevers et al., 2014).
VerbalWM is associated with the phonological loop (articulatory
loop and acoustic store; Broca and Wernicke’s area, respectively),
and so deficits in this – as opposed to the visuospatial – domain
may prevent the effective verbal rehearsal of top-down cognitive
strategies and recall of future goals (that may underlie excessive
ruminations in those with AN, for e.g.). Rehearsing cognitive
strategies verbally in mind might be even more difficult for those
with SUD in the presence of distractors (McClure and Bickel,
2014). In line with deficits in rehearsing verbal strategies in
mind, in those with impulse control disorders, various studies
have found that attention deficit symptoms (e.g., impulsivity,
“behavioral under-control,” fidgeting) and dysfunctional affective
regulation during childhood predict the later development of
SUD (Block et al., 1988; Caspi et al., 1996; Màsse and Tremblay,
1997; Moffitt et al., 2011). Moreover, in children with a diagnosis
of ADHD there is a higher risk for developing SUD later in life
(Molina and Pelham, 2003).

A formal diagnosis of ADHD has been shown to be dissociable
in core WM brain regions in adult ADHD patients with and
without spatialWMdeficits (Mattfeld et al., 2015), suggesting that
ADHD symptoms are somewhat necessary but not sufficient to
reduceWMability. This could be due, in part, to the development
of compensatory neural mechanisms during adulthood that
reduce WM deficits, or that core WM deficits in those with
ADHD at risk for SUD aggregate on neural networks underlying
the verbal and not spatial WM domain. With this in mind,
a recent meta-analysis of adults with SUD showed significant
deficits in the verbal WM domain and not others (Baldacchino
et al., 2012), which may also reflect evidence that there is a
switch from controlled (associated with ventral striatum and
prefrontal cortex) to habitual (associated with dorsal striatum
and amygdala) drug taking as SUD progresses (Everitt, 2014).
In other words, recreational and controlled drug use may be
associated with the employment of verbal WM strategies that
help to curtail impulsive behaviors, whichmay be lessened during
the switch to habitual drug use and withdrawal. This switch
could also hint at epigenetic effects, combined with the evidence
that improvements to WM and prefrontal cortex activation have
been observed in substance users who have achieved a period of
abstinence (Schulte et al., 2014).

Neural Processes of WM in SUD
Further clues regarding the link between SUD and deficits in
WM/cognitive control can be derived from the neuroimaging

studies found in our systematic review (n = 31) employing
electroencephalography (EEG), diffusion tensor imaging (DTI),
single photon emission computed tomography (SPECT),
functional and structural magnetic resonance imaging (MRI),
including task – and resting state fMRI. Eighteen (58%) of these
neuroimaging studies report normal WM performance but
with altered, perhaps compensatory – or inefficient – neural
processing (Chanraud et al., 2010, 2013; Crego et al., 2010;
Jager et al., 2010; Schweinsburg et al., 2010; Sweet et al., 2010;
Vollstädt-Klein et al., 2010; Bustamante et al., 2011; Sutherland
et al., 2011; Bach et al., 2012; Bogg et al., 2012; Campanella
et al., 2013; Charlet et al., 2014; Cousijn et al., 2014a,b; Ma et al.,
2014; Loughead et al., 2015; Brooks et al., 2016). Neural and not
behavioral differences during WM task performance may relate
to the GlobalWorkspace Theory and the recruitment of neuronal
networks that activate the DMN (e.g., for self-reflection) when
cognitive load is high (Finc et al., 2017). To support the notion
that brain imaging data can provide additional insight into the
processes of WM than behavioral data alone, a recent study has
suggested that compensatory neural mechanisms are at play
during variation in cognitive load (Clark et al., 2017).

The neuroimaging studies of WM in SUD have reported
that, while WM function appears normal (e.g., no significant
difference between cases and controls in behavioral data), there
is reduced activation in the PFC network – for example in opiate
maintenance patients (Bach et al., 2012). Similarly, reduced
right parietal cortex activation in cocaine users (Bustamante
et al., 2011), reduced ACC and medial PFC activation in
adolescent and adult binge drinkers, respectively, (Crego et al.,
2010; Bogg et al., 2012) and reduced functional connectivity in
frontostriatal networks in cocaine dependent individuals (Ma
et al., 2014). Conversely, other studies have reported increased
activation when WM performance is not significantly different
between cases and controls. For example, increased bilateral
supplementary motor area and PFC/dorsal ACC regions occurs
in binge drinkers (Vollstädt-Klein et al., 2010; Campanella et al.,
2013; Charlet et al., 2014) and increased PFC activation is
observed as cannabis use increases (Jager et al., 2010; Cousijn
et al., 2014a). Furthermore, increased PFC activation is shown
to remain over 3 years in cannabis users (Cousijn et al., 2014b;
Goudriaan, 2014). Similarly, increased bilateral insula, medial
superior prefrontal cortices, and right precentral gyrus activation
has been observed in marijuana users (Schweinsburg et al.,
2010). Increased PFC and posterior cingulate cortex activation
during WM tasks may be predictive of relapse – at least for
nicotine smokers (Loughead et al., 2015), and in chronic but
not acute smokers normal WM performance is associated with
increased activation of bilateral PFC, temporal, parietal, and
insular cortices (Sweet et al., 2010; Sutherland et al., 2011).
Interestingly, one study suggests that chronic alcoholics recruit
cerebellar function resources to stimulate PFC networks during
WM tasks (Chanraud et al., 2013). Finally, structural brain
imaging studies when no significantWM deficit is observed, have
reported increased basal ganglia volume using MRI after 4 weeks
of cognitive treatment for methamphetamine use (Brooks et al.,
2016) and increased frontocerebellar volume in those with
alcohol use disorder (Chanraud et al., 2010). Taken together,
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the neuroimaging studies clearly implicate differential neural
activation in brain regions that are typically associated with
the WM network, including the frontostriatal, parietal, insula
cortices, and cerebellar region. However, it is not yet clear
how increased or decreased neural activation or volume in
these regions differentiates WM function in those with SUD,
with studies suggesting compensatory or inefficient mechanisms
across networks to enable normal WM performance.

The remaining n = 11 (35%) brain imaging studies in our
systematic review reported worse WM performance in SUD
compared to controls and altered neural processes (Bava et al.,
2010; Moeller et al., 2010; Smith et al., 2010; Nulsen et al.,
2011; Cservenka et al., 2012; Marvel et al., 2012; Fitzpatrick and
Crowe, 2013; Ozsoy et al., 2013; Falcone et al., 2014; Claus and
Hendershot, 2015; Liang et al., 2016). In conjunction with worse
WM performance, structural studies demonstrated reduced
fractional anisotropy (FA) in PFC WM networks and higher
FA in visual networks that may be linked to cognitive biases
in alcohol and marijuana-using adolescents (Bava et al., 2010).
Other structural studies showed alcoholic cerebellar degeneration
was related to worse WM performance (Fitzpatrick and Crowe,
2013), and reduced hippocampal volumes in adolescents with
alcohol use disorder (Ozsoy et al., 2013), which may alter the
solidification of episodic memories within the WM network. In
terms of brain function, decreased activation in the superior
temporal gyrus and worse WM performance was observed in
male alcohol users after an acute dose of alcohol (Claus and
Hendershot, 2015). Decreased PFC activation and worse WM
was observed in youth with a family history of alcoholism
(Cservenka et al., 2012). Similarly, abstinent smokers performed
slower on a WM task and had decreased DLPFC and ACC
activation, but older age appeared to attenuate the effects (Falcone
et al., 2014). Cocaine dependent individuals show reduced
frontostriatal activation, and increased thalamus activation in
relation to treatment response (Moeller et al., 2010). Ecstasy
(MDMA) users during an EEG study also showed reduced
electrophysiological indices during a WM task (Nulsen et al.,
2011). Another study using SPECT measured another type of
brain function – dopamine transportation (DAT), and found
reduced DAT levels in the striatum of opioid dependent subjects
that related to non-perseverative (e.g., omission) errors during
a WM task (Liang et al., 2016). On the other hand, increased
activation in inferior/superior cerebellum and amygdala in
methadone maintenance opioid dependent participants has been
observed (Marvel et al., 2012), and increased activation of the
middle/superior frontal gyrus and right superior temporal gyrus
in young marijuana users during worseWM performance (Smith
et al., 2010). Taken together, worse WM performance appears to
imply deficits (reduced/aberrant structure and function) in brain
areas linked to the WM network, namely the PFC, hippocampus,
temporal gyrus – and also the cerebellum.

Some of the neuroimaging studies in our systematic review
included pharmacological challenge paradigms that go one step
further in identifying the neural mechanisms of WM in SUD.
Eleven pharmacological studies were found, including the use of
tolcapone (a COMT inhibitor) (Ashare et al., 2013); methadone
substitution therapy (an opioid derivative) (Bach et al., 2012;

Henry et al., 2012; Marvel et al., 2012; Rapeli et al., 2012;
Rass et al., 2015); buprenorphine substitution therapy (an opioid
derivative) (Bach et al., 2012; Rapeli et al., 2012); modafinil (a
GABA inhibitor that has stimulant properties) (Kalechstein et al.,
2010, 2013; Dean et al., 2011; Joos et al., 2013), and rivastigmine
(an acetylcholinesterase inhibitor) (Mahoney et al., 2014). The
study using tolcapone did not provide strong evidence that
reducing the function of COMT significantly alters WM function
in abstinent nicotine smokers (Ashare et al., 2013), though that
is not to say this approach would not work in other SUDs,
e.g., stimulant users, in line with altered dopaminergic function.
Studies using methadone or buprenorphine opioid substitution
therapy showed no significant influence on WM (Bach et al.,
2012; Henry et al., 2012; Marvel et al., 2012; Rapeli et al., 2012;
Rass et al., 2015). Conversely, there is accumulating evidence
that modafinil may significantly improve attention and WM in
those with SUD (Kalechstein et al., 2010, 2013; Dean et al., 2011;
Joos et al., 2013), and may be a useful pharmacological partner
for other interventions aiming to improve WM, such as WM
training. Finally, in the only preliminary study using rivastigmine
with cocaine dependent participants to date, there was significant
evidence that acetylcholinesterase inhibitors may improve WM
deficits (Mahoney et al., 2014). Thus, while most pharmacological
agents have not proven to be effective at improving WM
deficits in SUD, modafinil and rivastigmine may be beneficial
in conjunction with other psychological/cognitive interventions,
particularly for those with severe cognitive deficits.

Perhaps one of the most prominent findings arising from the
systematic review of WM in SUD is that the PFC – implicating
dopaminergic function and the dual process model (Goldman-
Rakic, 1995, 1998; Bechara, 2005) – is most altered (both
increased and decreased activation). Furthermore, PFC activation
may moderate the function of other brain regions implicated
in our review, namely the cerebellum, insula, basal ganglia
(including hippocampus, amygdala, striatum, ACC), thalamus,
temporal gyrus, and parietal cortex, in line with contemporary
neural models of addiction (Everitt, 2014). From the viewpoint
of dopaminergic dysfunction that pertains to cognitive control
deficits, an association implicating PFC volume differences
has been reported (Genevsky et al., 2010). Furthermore, the
link between psychosis and prolonged SUD, particularly in
the use of stimulants is established and highlights the role of
prefrontal dopaminergic system dysregulation (Bramness and
Rognli, 2016). Moreover, effective treatment for psychosis, which
is often observed in those with chronic SUD, targets PFC systems
involving theDLPFC (Welch et al., 2011; Li et al., 2015; Kani et al.,
2016). Similarly, repetitive transcranial magnetic stimulation of
the right DLPFC leads to a significant reduction in craving for
substances (Enokibara et al., 2016). Related to this, targeted
cognitive training for schizophrenia using auditory (as opposed
to visuospatial) WM tasks is most effective at reducing symptoms
that might coincide with neuroplasticity changes (Biagianti et al.,
2016). Thus, combined these findings suggest that PFC dopamine
dysfunction in particular, might underlie variations in cognitive
control, particularly with regard to auditory/verbal strategies for
future goals and modulation of distracting stimuli that may shed
light on the role of WM in SUD.
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Genetic Influences on WM in SUD
Genetics and Delay Discounting

While there were not enough studies for a systematic review,
there is a growing interest in the field of behavioral economics,
which considers delay discounting an endophenotype of cognitive
control deficits in addictive disorders. Delay discounting, broadly
synonymous with impulsivity, confers greater value to an
immediate – over a delayed reward (for review, see MacKillop,
2013), and one study in our review found that WM training
improves delay discounting in stimulant users (Bickel et al.,
2011). In terms of neural systems, the PFC is a significant
local circuitry to examine with respect to delay discounting and
WM, given that GABAergic delay interneurons, influenced by
excitatory NMDA receptors, particularly the NRB2 subunits,
endow this area of the cortex with “neural psychic properties”
(Monaco et al., 2015) to keep inmind goals for future reward. The
function of these neurons is a “double-edged sword,” however,
given their propensity to neuro-excitotoxicity and psychiatric
disorder, particularly schizophrenia (Monaco et al., 2015). In
addition, it is suggested that genetic variation related to dopamine
neurotransmission is significantly associated with variability in
discounting preferences, although the findings are currently
in need of replication (MacKillop, 2013). For example, delay
discounting has been examined in a sample of nearly 200
participants at high risk for impulsivity in relation to two genetic
variants, the DRD2/ANKK13 Taq IA SNP (rs1800497) and the
polymorphism in exon 3 of the dopamine D4 receptor gene
(DRD4 VNTR) (Eisenberg et al., 2007), a receptor found in PFC.
This study reported that A1 allele carriers who also had at least
one long version of DRD4 VNTR demonstrated significantly
higher levels of impulsive discounting compared to the other
genotype combinations (MacKillop, 2013). Furthermore, other
studies have examined the COMT val158met SNP (rs4680)
in relation to delay discounting. In one study of alcoholics
compared to healthy individuals those who were homozygous for
the COMT valine variant exhibited significantly more impulsive
discounting (Boettiger et al., 2007). Also, in terms of impulsive
discounting and the COMT val-val genotype, the val allele
is associated with greater enzymatic metabolism of dopamine,
which results in fast dopamine degradation that terminates
more quickly the actions of this neurotransmitter, and may
be associated with impulsivity (Savitz et al., 2006). Taken
together, while the genetic data pertaining to delay discounting
are mixed, and there are not currently enough studies for
systematic review, there is an emerging trend for dopaminergic
hypofunction to be associated with increased impulsivity and
delay discounting, implicating expression of the dopamine
receptor genes (Eisenberg et al., 2007). It is also pertinent to
consider that epigenetic effects in terms of DNA methylation
in the MB-COMT promoter gene are associated with improved
verbal WM function and increased left DLPFC activation in
humans (Walton et al., 2014).

Epigenetics in SUD

It is useful to consider how to harness epigenetic effects in
brain regions that predispose to addiction, given that receptor
studies examining potential psychopharmacological agents or

psychosocial methods have not curbed the rise in rates of
addiction (Cadet et al., 2016). Accumulating evidence implicates
dopaminergic epigenetic effects in addiction, and the starting
point was that D1 dopamine receptor (predominantly expressed
in human PFC) knock-out mice cease to self-administer cocaine
(Caine et al., 2007), whereas D3 (predominantly expressed in
the striatum) knock-out mice increase their self-administration
of the drug (Song et al., 2012). This might suggest that higher
levels of synaptic dopamine in the prefrontal cortex curtails
addictive behaviors, especially given that lower levels (due to
rapid degradation of prefrontal dopamine) is linked to addictive
behaviors such as impulsivity (Savitz et al., 2006), although
higher cortical dopamine level is also linked to schizophrenia
(Schacht, 2016). However, this again hints at an inverted
U-shape characterization of dysfunction in the prefrontal cortex
according to dopamine levels that are transiently too low
or high (Abi-Dargham, 2003; Vijayraghavan et al., 2016).
Furthermore, higher basal ganglia synaptic dopamine levels
may lead to increased dopamine arriving at the PFC, and
less top-down cognitive control of appetitive processes. Specific
epigenetic effects that facilitate transmission at dopaminergic
synapses might contribute to inverted U-shape variations in
function within the dopamine circuitry in those addicted to
psychostimulants (e.g., cocaine and amphetamine-like drugs)
involving the expression of several histone acetyltransferases
(HATs) and histone deacetylases (HDACs) (Cadet et al., 2016).
Taken together, if chronic SUD underlying a switch from
recreational to controlled to habitual drug taking (e.g., Everitt,
2014), involves epigenetic effects mainly in dopaminergic
pathways, then WM training that targets the same circuitry may
help to harness and improve dysfunctional epigenetic effects in
AN, SUD, and other impulse control disorders.

WORKING MEMORY TRAINING AS A
NOVEL ADJUNCT TO TREATMENT TO
IMPROVE COGNITIVE CONTROL

The neuroscience of epigenetics as cognitive enhancers in
humans (e.g., to harness and increase cognitive reserve, as
related to level of education), particularly when targeting specific
brain regions is growing popular in recent years (Mikaelsson
and Miller, 2011). Accumulating evidence shows that repetitive
training using increasingly difficult (“scaffolding,” Baker, 2010)
WM tasks may harness and strengthen inherent neuroplasticity,
particularly as a transdiagnostic treatment for SUD (Sofuoglu
et al., 2016) in key regions of the human WM network, such as
the DLPFC, medial PFC, parietal cortex, insula, and striatum (Li
et al., 2015). This may be particularly relevant to those whose
early life experiences are detrimental to developmental brain
processes (e.g., childhood trauma and fetal alcohol syndrome).
However, it must be remembered that the main criticism of the
efficacy of WM training is whether near-transfer effects (e.g.,
improvements on the WM task) translate into far-transfer effects
(e.g., improvements in fluid/crystalline intelligence, quality of
life and non-related cognitions). Furthermore, when considering
the epigenetic effects of WM training in humans that might
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underlie neuroplasticity mechanisms, there is currently no
evidence available, to the authors’ knowledge, and so research
into the underlying epigenetic mechanisms of WM training is
needed (Keshavan et al., 2014). However, in animal models,
WM training, for example, in infant rats, alters learning-induced
synaptic plasticity, such that spine formation is suppressed in the
ventromedial PFC, whereas spine pruning is suppressed in the
lateral orbitofrontal cortex (Bock et al., 2014).

Currently, there are various WM training paradigms on the
market, but very few with peer-reviewed evidence to support
claims of beneficial effects. Conducting a systematic review of
WM training paradigms is outside the aim of the present article,
but currently the leader in the field appears to be CogMedTM

by Torkel Klingberg (for recent review, see Spencer-Smith and
Klingberg, 2015), with n = 52 publications relating to CogMed
to date. CogMedTM is an online battery of WM training tasks
supported by qualified professionals all over the world, mainly
specializing in improving both near and far-transfer with relation
to attention and impulsivity in children, adolescents and adults
with ADHD and related attention difficulties. CogMedTM has
also proven beneficial to other populations, including healthy
school children who improve their academic performance with
WM training (Bergman Nutley and Söderqvist, 2017); as well as
children with traumatic brain injury (Phillips et al., 2016).

In line with the hypothesis that repetitive use ofWMprocesses
evokes neuroplasticity in the corticostriatal circuitry, we have
recently shown that 4 weeks of increasingly difficult WM training
(using a smartphone app developed by Dr. Brooks: ‘Curb Your
Addiction: C-Ya’) in participants with SUD evokes widespread
increase in bilateral basal ganglia volume (incorporating the
amygdala and hippocampus) (Brooks et al., 2016). Given that
we reported an average learning rate of 35% on the most
difficult level of the N-back training during the study (3-
back) coinciding with improvements in self-reported impulsivity
scores, we suggest that increased basal ganglia volumemay reflect
dopaminergic epigenetic effects, although epigenetic effects were
not measured in the study. This notion is supported by a recent
animal study demonstrating that WM training triggers delayed
chromatin remodeling in the mouse cortico-striato-thalamic
circuit (Cassanelli et al., 2015). Specifically, increased PFC and
dorsomedial striatum activation as measured by c-fos, a neuronal
marker of activation was reported by Cassanelli et al. (2015).
Additionally, they observed epigenetic effects of WM training
in terms of induced late changes in both H3 methylation and
acetylation in the dorsomedial striatum and the dorsomedial
thalamus, but not in the PFC (Cassanelli et al., 2015). However,
epigenetic effects in the basal ganglia may reflect downstream
modulation by PFC, although the inverted U-shape nature of
rapid regulation of receptors in the PFC may suggest that these
effects are more difficult to observe.

With this in mind, humans engaging in WM training
demonstrate increased prefrontal and striatal dopaminergic
activation (D’Ardenne et al., 2012; Tanida et al., 2012), and WM
training has been shown to improve impulsivity in patients with
SUD (Bickel et al., 2011). In this vein, a recent meta-analysis of
fMRI studies of WM training in people with SUD demonstrated
that, in line with reduced delay discounting there is increased

bilateral DLPFC activation (Wesley and Bickel, 2014). To date,
however, there have been no studies examining whether WM
training reduces compulsive and repetitive ruminations, and
related changes in neural processes in people with AN. In fact,
compared to SUD, as our systematic review confirms, there is
a paucity of research examining WM mechanisms and their
relation to excessive cognitive control in AN. Thus, against the
background of burgeoning neurobiological evidence into WM
processes and the potential beneficial effects of WM training
implicating the corticostriatal network (for review, see Spencer-
Smith and Klingberg, 2015), it appears that it is a worthwhile
research field to pursue in relation to improving cognitive control
of impulsivity and prognosis for psychiatric disorder, but there
are still many questions left unanswered.

IMPLICATIONS AND FUTURE
QUESTIONS TO BE ANSWERED

This review article has used the impulse control spectrum model
(Brooks et al., 2012b; Brooks, 2016) to compare the role ofWM in
cognitive control in AN and SUD. To consider the neurobiology
of WM (Baddeley and Hitch, 1974), we included reference to
contemporary theories of WM in the healthy human brain that
resonate with dual process theory of impulse control (Bechara,
2005; Sofuoglu et al., 2016), namely Global Workspace Theory
(Baars et al., 2013), and Bayesian Probabilistic Inference, or the
Bayesian Brain (Nilsson, 1986; Friston et al., 2015). As such,
before a systematic review of WM studies in AN and SUD,
we attempted to conceptualize the role of WM in the transient
experience of cognitive control. Within this conceptualization,
we have described how backstage saliency processes supported
by the dopaminergic basal ganglia network are activated non-
consciously and perhaps half a second prior to the decision to
exercise cognitive control (e.g., “free-won’t” or conscious veto,
Libet, 1985, such as appetite suppression in AN).We have further
described a minimum threshold of balanced activation between
interneurons in the GABAergic and glutamatergic PFC circuits.
The activation, which is likely transient and related to meta-
assemblies of functionally decaying neuronal clusters that adhere
to an inverted U-shape pattern, whereby visual representations
of future goals/predictions are held in mind in the absence of
external stimulation (Yantis, 2000). Then, we described some
research into how increasing the cognitive load of WM and
PFC activation may strengthen the neuronal architecture of these
circuits and reduce the competitive interference of bottom-up
distracting affective stimuli.

Against the background of healthy human WM brain
function, we conducted two systematic reviews of WM processes
in AN and SUD. By doing so, we related reviewed studies to data
in adolescents with an acute – and adults with a chronic diagnosis
of AN, whereby obsessive-compulsive rumination tendencies
reflect epistemic foraging and are likely supported by excessive
and rigid WM performance (particularly in the audio/verbal
domain). Furthermore, this pattern of WM function likely alters
neuroplasticity in DLPFC and the related corticolimbic network
(including the parietal, temporal, and insular cortices). We utilize
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the dual process addiction model (Bechara, 2005) to describe
AN (O’Hara et al., 2015) in terms of how corticostriatal reward
circuits may be hijacked by rumination restraint cognitions,
switching from deliberate to habitual dieting behavior. We then
explored epigenetic effects implicating dopaminergic pathways
in AN, involving the synaptogenic BDNF and SOX2-OT gene
that may play a part in neurogenesis and transient dopaminergic
transmission within the WM network. We described that
genetic susceptibility in AN confers risk for schizophrenia and
bipolar disorder, but protects against developing SUD. We then
systematically reviewed studies of SUD at the opposing end
of the impulse control spectrum model (Brooks et al., 2012b;
Brooks, 2016), in terms of verbal WM deficits (phonological
loop) and a switch from controlled prefrontal cortex and ventral
striatum activation to habitual dorsal striatum activation. Then,
we described how genetic susceptibility and epigenetic effects
within dopaminergic corticolimbic pathways are associated with
SUD. Thereafter, we concluded by briefly describing some
empirical studies regarding WM training and the influence on
neural processes. Finally, we now briefly address some remaining
questions and suggest novel experimental methods for future
research that may provide some answers.

Questions Unanswered and Novel
Experimental Methods for Testing the
Neurobiological Model of WM and
Cognitive Control
Various questions remain unanswered as to the neurobiological
underpinnings of cognitive control and the link to WM in the
healthy brain, and in AN and SUD, for a summary, see Figure 5.

Firstly, it is not yet clear whether unconscious processing is
the first step in the sequence of cognitive control within the
WM system, whether deliberative metacognitive processing is
the key, or if it is a circular relationship between cognitive and
affective processes, which are modified over time (Shea et al.,
2014). As such, it is not clear how the WM system interacts with
the mesolimbic circuitry to forge cognitive control of impulses,
although it is likely related to storage, encoding and retrieval
of future goals and prior beliefs that are stored in the episodic
buffer via the hippocampus. Secondly, it is not yet clear what
is the most effective way to measure unconscious processes
in the brain, and so far, backward masking (Figure 4), event-
related potentials with EEG (Figure 3) and subliminal tasks
with fMRI (Brooks et al., 2012c) have been commonly used,
but there are other novel experimental methods to consider as
described below. Thirdly, given that there is some evidence that
the ACC, part of the corticolimbic network, is activated to non-
consciously processed stimuli (e.g., Brooks et al., 2012c), it is not
yet clear if there are instances where the PFC is activated without
conscious awareness/engagement. For example, compulsive
repetitive restraint cognitions in those with AN may become
unconsciously activated in the PFC, but these may be driven by
alterations in bottom-up saliency network processes. Fourthly,
it is not yet known whether psychiatric disorder, pertaining to
deficits in WM and cognitive control, originates in excessive
bottom-up saliency networks, or aberrant top-down conscious

FIGURE 5 | Summary of the research questions still to be answered in the

field of neural correlates of WM and cognitive control.

metacognitions, or whether both are important. Fifthly, while
there is some evidence implicating the dorsal fronto-medial
cortex in terms of a conscious veto (“free won’t”) of anticipated
behavior (e.g., eating or substance use) (Kühn et al., 2009), which
is linked to reduced EEG readiness potentials during voluntary
omissions but not rule-based omissions (Misirlisoy and Haggard,
2014), the field remains relatively unexplored. Finally, it is not yet
clear whether epigenetic processes can be harnessed to improve
cognitive control and far transfer effects of WM training, such
as long-term neuroplasticity, clinical improvements and better
quality of life. Related to this, it is not known whether WM
training can alter regulation of GABAergic and glutamatergic
receptors that contribute to cognitive control and reduced delay
discounting via PFC activation that may be associated with AN.

Attempts to answer these unyielding questions could consider
novel non-invasive experimental approaches, such as, but not
limited to, repetitive Transcranial Magnetic Stimulation (rTMS),
real-time fMRI (rt-fMRI) and imaging epigenetics. Firstly, a
recent meta-analysis demonstrates that rTMS, which is suggested
to increase activation in the right DLPFC and has the potential
to alter receptor regulation and neurotransmitter function
significantly improves craving in those with SUD (Enokibara
et al., 2016). Similarly, rTMS of the DLPFC has mixed findings in
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those with binge eating disorder (Van den Eynde et al., 2010; Gay
et al., 2016) but is nevertheless linked to enhanced frontostriatal
connectivity and reduced craving (Dunlop et al., 2015). However,
rTMS of the DLPFC improves AN symptoms linked to more
prudent decision-making (McClelland et al., 2016) and improves
WM performance in general (Brunoni and Vanderhasselt, 2014).
With these rTMS studies in mind, it is useful to consider that
lateralization of function in the DLPFC has been reported, in
that the left DLPFC is linked to future control, whereas the
right DLPFC is linked to immediate control (Vanderhasselt et al.,
2009). Against this background, future studies could examine
whether a combination of increasingly difficult WM training
and rTMS over the left or right DLPFC could foster long-term
changes in the corticolimbic dopaminergic circuitry that translate
into clinical and quality of life improvements.

Secondly, rt-fMRI explores biofeedback mechanisms such
that participants learn, via conditioning, the association
between physiological experience of cognitive control and visual
representation of brain activation (Val-Laillet et al., 2015).
However, while emerging evidence supports neurofeedback-
guided upregulation of hypoactive networks, it appears more
difficult to downregulate hyperactive networks (Ihssen et al.,
2016). Nevertheless, some recent evidence suggests that
motivational neurofeedback can reduce the incentive salience
of appetitive food cues, and that this is linked to alterations in
the corticolimbic circuitry (Ihssen et al., 2016). Furthermore,
Ihssen et al. (2016) conclude that decreased neural responses
to salient stimuli appears not to be regulated by top-down
processes, but rather arises from subcortical regions related
to implicit operant reinforcement of brain activity. Similarly,
for SUD (alcohol), rt-fMRI has been shown to be effective in
reducing functional connectivity between ACC, insula (limbic
saliency network), inferior temporal gyrus (part of the “what”
visual pathway, and may indicate reduced cue-induced saliency)
and medial frontal gyrus (associated with self-related processing)
(Karch et al., 2015). Thus, against this background, rt-fMRI
might positively reinforce a participant involved inWM training,
by demonstrating how improved WM performance, and thus
cognitive control, is linked to neural activation.

Finally, examining epigenetic variations that are related to
gene methylation in peripherally assessed DNA (e.g., blood and
saliva) and correlating with behavioral and clinical measures
associated with brain function is a new field that aims to locate
biological mechanisms of risk for psychiatric disorder (Nikolova
and Hariri, 2015). It is suggested that the first steps in the field
of imaging epigenetics should examining well-established neural
circuitry, such as dopaminergic genes and the reward/motivation
pathways (Schultz, 2002) and by combining this approach
with multi-modal brain imaging techniques (e.g., positron
emission tomography, EEG, fMRI) (Nikolova and Hariri, 2015).
Furthermore, it is suggested that epigenetic imaging should
be guided by the most significant GWAS data, and in terms
of AN and SUD the dopaminergic system (BDNF, DAT, and
DAD2) and also the SOX2-OT gene associated with neurogenesis
are implicated. Specifically, in terms of AN, while most recent
GWAS studies do not support the significant data found in
single studies, the opioid, leptin, ghrelin, orexin, and serotonin

receptor genes may be promising areas of further exploration for
epigenetic imaging studies (Gorwood et al., 2016). Specifically, in
terms of SUD, there is an urgent need for biomarkers that are
associated with chronic addiction to be classified, but presently
the dopaminergic reward system appears to be key (Volkow et al.,
2015).

CONCLUSION

Themajor suggestion, or ‘red line’ throughout this article was that
WM capacity, which supports the verbal repetition of cognitive
strategies that aid in the experience of cognitive control and
epistemic foraging for beliefs about the (uncertain) future, may
not be limited to ‘seven plus or minus two’ (Miller, 1956) but
can be widened, deepened, strengthened or made more flexible
by repetitive use of WM. If this is the case, then WM training
may be a useful adjunct to improveWM, promote neuroplasticity
changes and enhance treatment effects in those with impulse
control disorders. WM has a long history of being associated
with cognitive control (e.g., Goldman-Rakic, 1995, 1998; Bechara,
2005) and supports healthy epistemic foraging of information
from internal or external cues that help guide decisions and
behavior. The link between WM and epistemic foraging reflects
the Bayesian view of brain processing, where bits of information
are transiently kept in mind to update our prior beliefs about
the world. If more bits of information can be held in mind (e.g.,
with greater WM capacity) then it might be that better prediction
updating occurs based on prior beliefs. Similarly, the Bayesian
brain view posits that too much uncertainty (e.g., a suboptimal
cognitive model, perhaps related to limited WM capacity) can
lead to greater allostatic load, stress and anxiety, which are
common comorbidities in AN and SUD.

And so, it holds that a larger (or more flexible) WM capacity
could support more bits of information that are transiently
evaluated in the mind for improved updating of prior beliefs.
This might prevent the bias of ‘jumping to conclusions’ as is
sometimes observed in those with SUD, or rigid, local versus
global cognitive processing as often occurs in those with AN
(Kothari et al., 2013). However, when WM capacity is smaller,
or dysfunctional, this might translate into heightened allostatic
load and psychiatric disorders such as AN or SUD. To test
this hypothesis, after detailing healthy neuropsychological, neural
and genetic processes underlying WM, we have highlighted
varying degrees of cognitive control and differences in WM
by systematically reviewing AN and SUD. We have compared
studies of AN and SUD because they have previously been
associated with extremes of cognitive control on an impulse
control spectrum model of eating disorders, whereby normal
control is in the middle (Brooks et al., 2012b; Brooks, 2016)
(Figure 1) and SUD has similarities to binging (Volkow and
Baler, 2015). Using an a priori model upon which to test a
hypothesis and update a theory is a robust and replicable scientific
method.

Using the impulse control spectrummodel, we have examined
the neuropsychology, neural and genetic processes underlying
WM and its role in cognitive control in AN versus SUD. From
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FIGURE 6 | Schematic diagram of the dopamine absorber and dopamine pump analogy. Image of dopamine uptake pump by permission from

http://www.nida.nih.gov/pubs/teaching/teaching2/Teaching2.html. Image of eye by permission from http://www.clipartpanda.com/categories/blue-eyes-clipart.

Image of ear by permission from http://www.clipartkid.com/ear-cliparts/. Image of mouth by permission from http://www.clipartkid.com/mouth-cliparts/.Image of “1”

reward badge by permission from http://www.clker.com/cliparts/B/Z/b/k/v/7/award-symbol-md.png. Image of red prefrontal cortex by permission from

https://commons.wikimedia.org/wiki/Category:Prefrontal_cortex#/media/File:Prefrontal_cortex_(left)_-_lateral_view.png. (A) Dopamine absorber analogy (anorexia

nervosa): excessive, deliberative activation of the prefrontal cortex (sponge), by way of repetitive cognitive ruminations, absorbs increased endogenous dopamine

release via the basal ganglia (reward symbol) via epigenetic upregulation of receptor systems. Repetitive phonological and visuospatial rehearsal (eyes, ears, mouth),

held in mind by prefrontal cortex delay interneurons strengthens the saliency (and therefore the ability to stimulate basal ganglia dopamine release) and relevance of

imagined images. To prevent habituation over time, imagined images become more detailed and complex to stimulate required levels of dopamine for prefrontal

cortex absorption. (B) Dopamine pump analogy (substance use disorder): excessive activation of basal ganglia dopaminergic system (uptake pump) by way of

consumption of substances increases the release and re-uptake of dopamine. This in turn biases repetitive phonological and visuospatial rehearsal (eyes, ears,

mouth) in favor of the stimulus that is associated with increased dopamine release (e.g., food and drugs). Excessive dopamine arriving at the prefrontal cortex

weakens top-down control and encourages exogenous dopamine release stimulation. In both analogies, there is a propensity for increased dopamine in the

prefrontal cortex, which leads to epigenetic effects, inflexible cognitive style and chronic disorder, as well as risk for the development of psychosis.

a neuropsychological perspective, there are mixed findings with
regard to WM in AN, but the data are suggestive of over-
compensatory mechanisms to achieve a normal WM ability. In
terms of the neuropsychology of WM in those with SUD, more
studies have been conducted and suggest that there is a weakening
of performance (e.g., reduced capacity), that is exacerbated by an
inability to avoid distractions and impulsively choose immediate
over delayed rewards. In terms of the neural mechanisms of
WM in AN, excessive activation of the ECN (e.g., DLPFC, ACC,
interacting with limbic regions) appears to be key, and may be
a trait, as opposed to a state of the disorder. Conversely, those
with SUD appear to have excessive activation of the mesolimbic
reward pathway – also known as the saliency network – and
dysfunctional activation of PFC networks. Finally, in terms of
(epi)genetic findings, for those with AN there is inconclusive

evidence at present, whereas for those with SUD genetic linkage
with the dopaminergic brain systems (e.g., receptors transporters,
and enzymes) might be key. And while no epigenetic studies have
yet examined the dynamic influences on genetic expression in AN
or SUD, animal studies hint that delay interneurons and a discrete
balance between activation of glutamatergic and GABAergic
PFC circuits (in the absence of external stimuli) may foster
different WM profiles that may link to variations in cognitive
control. As such, chronic hyper- or hypo-activation of ECNs,
in conjunction with variations in activation in the mesolimbic
salience pathways, may foster changes in receptor regulation that
contribute to changes in cognitive control of impulsivity at the
neural level.

In order to bring together, in a simple visual, the potential
mechanisms of suboptimal WM in AN and SUD proposed
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here, one could use the analogies dopamine absorber versus
dopamine pump, respectively (Figure 6). In both cases,
there is a lack of cognitive flexibility as excessive dopamine
release biases neural responses. In the dopamine absorber
system (AN), neural activation associated with excessive WM
function and eating disorder ruminations hijacks corticostriatal
dopaminergic pathways, such that PFC epigenetic upregulation
of dopaminergic, glutamatergic, GABAergic receptors occurs in
response to higher levels of basal ganglia dopamine release.
Repetitive and increasingly detailed local – as opposed to
global rumination on auditory eating disorder mantras over
an extended period of time (e.g., “I will only eat salad
at noon”), as per the WM model, solidifies images in
hippocampal episodic memory networks, such that the saliency
of these images, and their ability to activate dopamine systems,
becomes stronger and non-conscious, particularly in conditions
of uncertainty. Epigenetic upregulation of GABAergic and
glutamatergic antagonistic networks within the PFC, in the
absorber analogy, foster greater activation of delay interneurons
that supports more detailed epistemic foraging. This could be
synonymous with strengthened cognitive control in response to
increased incentive saliency for imagined stimuli and predictions
about future goals (Yantis, 2000).

Conversely, in the dopamine pump system (SUD), ingestion
of rewarding substances, akin to binge eating (Volkow
and Baler, 2015), bypasses prefrontal cortex modulation,
such that downregulation of receptors in the basal ganglia
dopaminergic network confers risk for craving and reduced
(or biased) epistemic foraging. Disruption, as a result of
greater bottom-up dopamine availability following substance
use, weakens the ECN that underlies WM. In both the
dopamine absorber and dopamine pump scenarios there is
a heightened risk for schizophrenia, but more so in SUD,
given that there is an increase in PFC dopamine flooding
the WM system and promoting a model-free, ‘jumping to
conclusions’ scenario. This would hinder optimal inference
generating and epistemic foraging of reality to update prior
beliefs. Furthermore, the experience of early life adversity,
which is perhaps more common in those with SUD than
AN, may have detrimental effects on the WM system that

supports the exercising of prior beliefs about the self, world and
others, which particularly involves the cortical to hippocampal
circuitry.

In line with the findings of this review, increasingly
difficult repetitive WM training may harness inherent epigenetic
effects that underlie neuroplasticity within the corticolimbic
dopaminergic system, such that improvements may occur in the
use of cognitive control over impulsivity (which is related, more
broadly, to fluid intelligence), and related far-transfer effects (e.g.,
improvements to attention and hyperactivity). WM training may
also aid those with AN by widening WM capacity that may
support greater flexibility, less attention to detail and global
versus local cognitive processing. Refined measurement of the
neural systems underlying WM and its link to cognitive control
might better test the assumptions of the impulse control spectrum
model, more broadly to fit not only eating disorders but also those
with addiction, to strengthen interventions for disorders such as
AN and SUD.
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