73 research outputs found

    Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing

    Get PDF
    Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes

    Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Get PDF
    Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain

    Polygenic risk scores for autoimmune related diseases are significantly different in cancer exceptional responders

    No full text
    Abstract A small number of cancer patients respond exceptionally well to therapies and survive significantly longer than patients with similar diagnoses. Profiling the germline genetic backgrounds of exceptional responder (ER) patients, with extreme survival times, can yield insights into the germline polymorphisms that influence response to therapy. As ERs showed a high incidence in autoimmune diseases, we hypothesized the differences in autoimmune disease risk could reflect the immune background of ERs and contribute to better cancer treatment responses. We analyzed the germline variants of 51 ERs using polygenic risk score (PRS) analysis. Compared to typical cancer patients, the ERs had significantly elevated PRSs for several autoimmune-related diseases: type 1 diabetes, hypothyroidism, and psoriasis. This indicates that an increased genetic predisposition towards these autoimmune diseases is more prevalent among the ERs. In contrast, ERs had significantly lower PRSs for developing inflammatory bowel disease. The left-skew of type 1 diabetes score was significant for exceptional responders. Variants on genes involved in the T1D PRS model associated with cancer drug response are more likely to co-occur with other variants among ERs. In conclusion, ERs exhibited different risks for autoimmune diseases compared to typical cancer patients, which suggests that changes in a patient’s immune set point or immune surveillance specificity could be a potential mechanistic link to their exceptional response. These findings expand upon previous research on immune checkpoint inhibitor-treated patients to include those who received chemotherapy or radiotherapy
    corecore