34 research outputs found

    An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields

    Full text link
    Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasiticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter's limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present

    ASCOT: solving the kinetic equation of minority particle species in tokamak plasmas

    Full text link
    A comprehensive description of methods, suitable for solving the kinetic equation for fast ions and impurity species in tokamak plasmas using Monte Carlo approach, is presented. The described methods include Hamiltonian orbit-following in particle and guiding center phase space, test particle or guiding center solution of the kinetic equation applying stochastic differential equations in the presence of Coulomb collisions, neoclassical tearing modes and Alfv\'en eigenmodes as electromagnetic perturbations relevant to fast ions, together with plasma flow and atomic reactions relevant to impurity studies. Applying the methods, a complete reimplementation of the well-established minority species code ASCOT is carried out as a response both to the increase in computing power during the last twenty years and to the weakly structured growth of the code, which has made implementation of additional models impractical. Also, a benchmark between the previous code and the reimplementation is accomplished, showing good agreement between the codes.Comment: 13 pages, 9 figures, submitted to Computer Physics Communication

    Calculating the 3D magnetic field of ITER for European TBM studies

    Full text link
    The magnetic perturbation due to the ferromagnetic test blanket modules (TBMs) may deteriorate fast ion confinement in ITER. This effect must be quantified by numerical studies in 3D. We have implemented a combined finite element method (FEM) -- Biot-Savart law integrator method (BSLIM) to calculate the ITER 3D magnetic field and vector potential in detail. Unavoidable geometry simplifications changed the mass of the TBMs and ferritic inserts (FIs) up to 26%. This has been compensated for by modifying the nonlinear ferromagnetic material properties accordingly. Despite the simplifications, the computation geometry and the calculated fields are highly detailed. The combination of careful FEM mesh design and using BSLIM enables the use of the fields unsmoothed for particle orbit-following simulations. The magnetic field was found to agree with earlier calculations and revealed finer details. The vector potential is intended to serve as input for plasma shielding calculations.Comment: In proceedings of the 28th Symposium on Fusion Technolog

    Carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy

    Get PDF
    The complete evaluation of the carcinogenicity of cobalt, antimony compounds, and weapons-grade tungsten alloy will be published in Volume 131 of the IARC Monographs.[Excerpt] In March, 2022, a Working Group of 31 scientists from 13 countries met remotely at the invitation of the International Agency for Research on Cancer (IARC) to finalise their evaluation of the carcinogenicity of nine agents: cobalt metal (without tungsten carbide or other metal alloys), soluble cobalt(II) salts, cobalt(II) oxide, cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, trivalent antimony, pentavalent antimony, and weapons-grade tungsten (with nickel and cobalt) alloy. For cobalt metal and the cobalt compounds, particles of all sizes were included in the evaluation. These assessments will be published in Volume 131 of the IARC Monographs.1 Cobalt metal and soluble cobalt(II) salts were classified as “probably carcinogenic to humans” (Group 2A) based on “sufficient” evidence for cancer in experimental animals and “strong” mechanistic evidence in human primary cells. Cobalt(II) oxide and weapons-grade tungsten alloy were classified as “possibly carcinogenic to humans” (Group 2B) based on “sufficient” evidence in experimental animals. Trivalent antimony was classified as “probably carcinogenic to humans” (Group 2A), based on “limited” evidence for cancer in humans, “sufficient” evidence for cancer in experimental animals, and “strong” mechanistic evidence in human primary cells and in experimental systems. Cobalt(II,III) oxide, cobalt(II) sulfide, other cobalt(II) compounds, and pentavalent antimony were each evaluated as “not classifiable as to its carcinogenicity to humans” (Group 3).[...

    European code against cancer 4th edition: 12 ways to reduce your cancer risk

    Get PDF
    This overview describes the principles of the 4th edition of the European Code against Cancer and provides an introduction to the 12 recommendations to reduce cancer risk. Among the 504.6 million inhabitants of the member states of the European Union (EU28), there are annually 2.64 million new cancer cases and 1.28 million deaths from cancer. It is estimated that this cancer burden could be reduced by up to one half if scientific knowledge on causes of cancer could be translated into successful prevention. The Code is a preventive tool aimed to reduce the cancer burden by informing people how to avoid or reduce carcinogenic exposures, adopt behaviours to reduce the cancer risk, or to participate in organised intervention programmes. The Code should also form a base to guide national health policies in cancer prevention. The 12 recommendations are: not smoking or using other tobacco products; avoiding second-hand smoke; being a healthy body weight; encouraging physical activity; having a healthy diet; limiting alcohol consumption, with not drinking alcohol being better for cancer prevention; avoiding too much exposure to ultraviolet radiation; avoiding cancer-causing agents at the workplace; reducing exposure to high levels of radon; encouraging breastfeeding; limiting the use of hormone replacement therapy; participating in organised vaccination programmes against hepatitis B for newborns and human papillomavirus for girls; and participating in organised screening programmes for bowel cancer, breast cancer, and cervical cancer

    European Code against Cancer, 4th Edition: Cancer screening

    Get PDF
    In order to update the previous version of the European Code against Cancer and formulate evidence-based recommendations, a systematic search of the literature was performed according to the methodology agreed by the Code Working Groups. Based on the review, the 4th edition of the European Code against Cancer recommends: “Take part in organized cancer screening programmes for: ‱ Bowel cancer (men and women)‱ Breast cancer (women)‱ Cervical cancer (women).”Organized screening programs are preferable because they provide better conditions to ensure that the Guidelines for Quality Assurance in Screening are followed in order to achieve the greatest benefit with the least harm. Screening is recommended only for those cancers where a demonstrated life-saving effect substantially outweighs the potential harm of examining very large numbers of people who may otherwise never have, or suffer from, these cancers, and when an adequate quality of the screening is achieved. EU citizens are recommended to participate in cancer screening each time an invitation from the national or regional screening program is received and after having read the information materials provided and carefully considered the potential benefits and harms of screening. Screening programs in the European Union vary with respect to the age groups invited and to the interval between invitations, depending on each country's cancer burden, local resources, and the type of screening test used For colorectal cancer, most programs in the EU invite men and women starting at the age of 50–60 years, and from then on every 2 years if the screening test is the guaiac-based fecal occult blood test or fecal immunochemical test, or every 10 years or more if the screening test is flexible sigmoidoscopy or total colonoscopy. Most programs continue sending invitations to screening up to the age of 70–75 years. For breast cancer, most programs in the EU invite women starting at the age of 50 years, and not before the age of 40 years, and from then on every 2 years until the age of 70–75 years. For cervical cancer, if cytology (Pap) testing is used for screening, most programs in the EU invite women starting at the age of 25–30 years and from then on every 3 or 5 years. If human papillomavirus testing is used for screening, most women are invited starting at the age of 35 years (usually not before age 30 years) and from then on every 5 years or more. Irrespective of the test used, women continue participating in screening until the age of 60 or 65 years, and continue beyond this age unless the most recent test results are normal

    Monte Carlo method and High Performance Computing for solving Fokker–Planck equation of minority plasma particles

    No full text
    This paper explains how to obtain the distribution function of minority ions in tokamak plasmas using the Monte Carlo method. Since the emphasis is on energetic ions, the guiding-center transformation is outlined, including also the transformation of the collision operator. Even within the guiding-center formalism, the fast particle simulations can still be very CPU intensive and, therefore, we introduce the reader also to the world of high-performance computing. The paper is concluded with a few examples where the presented method has been applied
    corecore