114 research outputs found

    Multiangular Spectrometry and Optical Properties of Debris Covered Surfaces

    Get PDF
    Due to the recent development in CCD technology aerial photography is now slowly changing from film to digital cameras. This new aspect in remote sensing allows and requires also new automated analysis methods. Basic research on reflectance properties of natural targets is needed so that computerized processes could be fully utilized. For this reason an instrument was developed at Finnish Geodetic Institute for measurement of multiangular reflectance of small remote sensing targets e.g. forest understorey or asphalt. Finnish Geodetic Institute Field Goniospectrometer (FiGIFiGo) is a portable device that is operated by 1 or 2 persons. It can be reassembled to a new location in 15 minutes and after that a target's multiangular reflectance can be measured in 10 - 30 minutes (with one illumination angle). FiGIFiGo has effective spectral range approximately from 400 nm to 2000 nm. The measurements can be made either outside with sunlight or in laboratory with 1000 W QTH light source. In this thesis FiGIFiGo is introduced and the theoretical basis of such reflectance measurements are discussed. A new method is introduced for extraction of subcomponent proportions from reflectance of a mixture sample, e.g. for retrieving proportion of lingonberry's reflectance in observation of lingonberry-lichen sample. This method was tested by conducting a series of measurements on reflectance properties of artificial samples. The component separation method yielded sound results and brought up interesting aspects in targets' reflectances. The method and the results still need to be verified with further studies, but the preliminary results imply that this method could be a valuable tool in analysis of such mixture samples.Viimevuosina tapahtunut kehitys CCD teknologiassa on vihdoin mahdollistanut myös digitaalisten ilmakuvakameroiden valmistamisen. Digitaalisen kuvauksen käsittelyssä ei ole enää järkevää käyttää manuaalisia filmeille kehitettyjä menetelmiä vaan uusi tekniikka mahdollistaa myös automaattisen tietokoneprosessoinnin. Uusien tehokkaiden datan käsittelytapojen kehittäminen kuitenkin vaatii huomattavaa panostusta kaukokartoituskohteiden valonsironnan perustutkimukseen. Tämän vuoksi Geodeettisella Laitoksella on kehitetty goniospektrometri FiGIFiGo (Finnish Geodetic Institute Field Goniospectrometer), jolla voidaan mitata pienten kaukokartoituskohteiden reflektanssi monisuuntaisesti. Mitattaviksi kohteiksi käyvät esimerkiksi metsän aluskasvillisuus tai asvaltti. FiGIFiGo on helppokäyttöinen ja kannettava laite jonka operoimiseen tarvitaan kaksi ihmistä. Se voidaan koota 15 minuutissa käyttövalmiiksi, jonka jälkeen yhden kohteen sirontaominaisuuksien mittaamiseen kuluu 10 - 30 minuuttia käytetystä tarkkuudesta riippuen. FiGIFiGo:lla voidaan tehdä mittauksia tehokkaasti välillä 400 - 2000 nm sekä ulkona auringonvalolla että sisällä 1000 W laboratorio lampun kanssa. Tässä 'Pro Gradu'-tutkielmassa käsitellään FiGIFiGo ja sen mittausten teoreettinen pohja. Tutkielmassa esitellään myös uusi metodi monesta eri komponentista koostuvan kohteen tutkimiseen. Metodilla voidaan jakaa kohteesta mitattu monisuuntainen reflektanssi sen osien välille, eli esimerkiksi puolukka-jäkälä-kohteesta sironneen valon spektristä voidaan erottaa puolukan osuus. Työssä mitattiin useiden eri keinotekoisten kohteiden reflektanssit ja metodia testattiin soveltamalla sitä näihin tuloksiin. Saadut tulokset vaikuttivat järkeviltä ja ne toivat esille mielenkiintoisia huomioita kohteiden sironnasta. Pienen näytemäärän vuoksi metodin ja tulosten vahvistamiseen tarvitaan vielä lisänäyttöä. Alustavat tulokset vihjaavat kuitenkin että metodi voisi olla hyödyllinen työkalu vastaavien mittausten analysoinniss

    Empirical Studies on Multiangular, Hyperspectral, and Polarimetric Reflectance of Natural Surfaces

    Get PDF
    The reflectance factor is a quantity describing the efficiency of a surface to reflect light and affecting the observed brightness of reflected light. It is a complex property that varies with the view and illumination geometries as well as the wavelength and polarization of the light. The reflectance factor response is a peculiar property of each target surface. In optical remote sensing, the observed reflectance properties of natural surfaces are used directly for, e.g., classifying targets. Also, it is possible to extract target physical properties from observations, but generally this requires an understanding and modeling of the reflectance properties of the target. The most direct way to expand our understanding of the reflectance properties of natural surfaces is through empirical measurements. This thesis presents three original measurement setups for obtaining the reflectance properties of natural surfaces and some of the results acquired using them. The first instrument is the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO); an instrument for measuring the view angle dependency of polarized hyperspectral reflectance factor on small targets. The second instrument is an unmanned aerial vehicle (UAV) setup with a consumer camera used for taking measurements. The procedure allows 2D-mapping of the reflectance factor view angle dependency over larger areas. The third instrument is a virtual hyperspectral LiDAR, i.e. a setup for acquiring laser scanner point clouds with 3D-referenced reflectance spectra ([x,y,z,R(λ)]). During the research period 2005 2011, the FIGIFIGO was used to measure the angular reflectance properties of nearly 400 remote sensing targets, making the acquired reflectance library one of the largest of its kind in the world. These data have been exploited in a number of studies, including studies dealing with the vicarious calibration of airborne remote sensing sensors and satellite imagery and the development and characterization of reflectance reference targets for airborne remote sensing sensors, and the reflectance measurements have been published as a means of increasing the general understanding of the scattering of selected targets. The two latter instrument prototypes demonstrate emerging technologies that are being used in a novel way in remote sensing. Both measurement concepts have shown promising results, indicating that, in some cases, it can be beneficial to use such a methodology in place of the traditional remote sensing methods. Thus, the author believes that such measurement concepts will be used more widely in the near future. Heijastuskerroin on kullekin kohteelle yksilöllinen ominaisuus joka kuvaa kohteesta heijastuneen valon määrää. Heijastuskertoimen arvo riippuu havainto- ja valaistusgeometriasta sekä valon aallonpituudesta ja polarisaatiosta. Useimmissa optisen kaukokartoituksen menetelmissä mitataan kohteiden heijastuskerrointa. Näitä heijastuskerroinhavaintoja käytetään suoraan esim. kohteiden luokittelussa. Kehittyneemmissä menetelmissä havainnoista on myös mahdollista irrottaa joitain kohteen fysikaalisia ominaisuuksia, mutta yleensä tämä edellyttää kohteen ymmärtämistä sekä valonsironnan mallintamista. Suorin tapa laajentaa ymmärrystä luonnon pintojen valonsironnasta on tehdä empiirisiä mittauksia. Tässä väitöskirjassa esitellään kolme mittalaitetta luonnon pintojen valonsironnan mittaamiseksi sekä näillä laitteilla kerättyjä tuloksia. Ensimmäinen esiteltävä mittalaite on Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO), jolla voidaan mitata kohteen sirottaman valon suuntariippuvuutta valon aallonpituuden sekä polarisaation funktiona. Toinen mittalaite on automaattinen miehittämätön helikopteri. Kopteriin asennetun kameran sekä kuvien yhdistämismenetelmän avulla maaston valonsironnan suuntariippuvuutta voidaan kartoittaa laajemmilla alueilla kuin FIGIFIGO:a käyttäen. Kolmas mittalaite on virtuaalinen valkean valon LiDAR, jolla voidaan mitata laboratoriokohteen 3D rakenne yhdessä heijastusspektrien kanssa ([x,y,z,R(λ)]). Tutkimusjakson (2005 2011) aikana FIGIFIGO:a on käytetty lähes 400 kaukokartoituskohteen sironnan suuntariippuvuuden mittaamiseen. Näillä mittauksilla kerätty datakirjasto on yksi maailman suurimmista ja kattavimmistaan lajissaan. FIGIFIGO-mittauksia on hyödynnetty useissa tutkimuksissa esim. satelliitti havaintojen ja kaukokartoitus sensoreiden lennonaikaisessa kalibroinnissa ja validoinnissa, sekä ilmakuvauksen heijastuskerroinreferenssikohteiden kehittämisessä. Mittaustulokset on myös julkaistu tieteellisissä julkaisuissa laajentaen yleistä ymmärrystä kaukokartoituskohteiden valonsironnasta. Kaksi jälkimmäistä mittalaitetta ovat prototyyppejä joilla on testattu ja demonstroitu uutta tekniikkaa jota ei ole aiemmin hyödynnetty kaukokartoituksessa tällä tavoin. Molemmat mittauskonseptit tuottivat lupaavia tuloksia mahdollistaen uudentyyppisten mittausten tekemisen. Saadut tulokset antavat ymmärtää että mittauskonseptien kehittämistä kannattaa jatkaa ja on todennäköistä että tämän kaltaiset mittausmenetelmät tulevat jo lähitulevaisuudessa leviämään laajempaan käyttöön kaukokartoituksessa

    Empirical Studies on Multiangular, Hyperspectral, and Polarimetric Reflectance of Natural Surfaces

    Get PDF
    The reflectance factor is a quantity describing the efficiency of a surface to reflect light and affecting the observed brightness of reflected light. It is a complex property that varies with the view and illumination geometries as well as the wavelength and polarization of the light. The reflectance factor response is a peculiar property of each target surface. In optical remote sensing, the observed reflectance properties of natural surfaces are used directly for, e.g., classifying targets. Also, it is possible to extract target physical properties from observations, but generally this requires an understanding and modeling of the reflectance properties of the target. The most direct way to expand our understanding of the reflectance properties of natural surfaces is through empirical measurements. This thesis presents three original measurement setups for obtaining the reflectance properties of natural surfaces and some of the results acquired using them. The first instrument is the Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO); an instrument for measuring the view angle dependency of polarized hyperspectral reflectance factor on small targets. The second instrument is an unmanned aerial vehicle (UAV) setup with a consumer camera used for taking measurements. The procedure allows 2D-mapping of the reflectance factor view angle dependency over larger areas. The third instrument is a virtual hyperspectral LiDAR, i.e. a setup for acquiring laser scanner point clouds with 3D-referenced reflectance spectra ([x,y,z,R(λ)]). During the research period 2005 2011, the FIGIFIGO was used to measure the angular reflectance properties of nearly 400 remote sensing targets, making the acquired reflectance library one of the largest of its kind in the world. These data have been exploited in a number of studies, including studies dealing with the vicarious calibration of airborne remote sensing sensors and satellite imagery and the development and characterization of reflectance reference targets for airborne remote sensing sensors, and the reflectance measurements have been published as a means of increasing the general understanding of the scattering of selected targets. The two latter instrument prototypes demonstrate emerging technologies that are being used in a novel way in remote sensing. Both measurement concepts have shown promising results, indicating that, in some cases, it can be beneficial to use such a methodology in place of the traditional remote sensing methods. Thus, the author believes that such measurement concepts will be used more widely in the near future. Heijastuskerroin on kullekin kohteelle yksilöllinen ominaisuus joka kuvaa kohteesta heijastuneen valon määrää. Heijastuskertoimen arvo riippuu havainto- ja valaistusgeometriasta sekä valon aallonpituudesta ja polarisaatiosta. Useimmissa optisen kaukokartoituksen menetelmissä mitataan kohteiden heijastuskerrointa. Näitä heijastuskerroinhavaintoja käytetään suoraan esim. kohteiden luokittelussa. Kehittyneemmissä menetelmissä havainnoista on myös mahdollista irrottaa joitain kohteen fysikaalisia ominaisuuksia, mutta yleensä tämä edellyttää kohteen ymmärtämistä sekä valonsironnan mallintamista. Suorin tapa laajentaa ymmärrystä luonnon pintojen valonsironnasta on tehdä empiirisiä mittauksia. Tässä väitöskirjassa esitellään kolme mittalaitetta luonnon pintojen valonsironnan mittaamiseksi sekä näillä laitteilla kerättyjä tuloksia. Ensimmäinen esiteltävä mittalaite on Finnish Geodetic Institute Field Goniospectrometer (FIGIFIGO), jolla voidaan mitata kohteen sirottaman valon suuntariippuvuutta valon aallonpituuden sekä polarisaation funktiona. Toinen mittalaite on automaattinen miehittämätön helikopteri. Kopteriin asennetun kameran sekä kuvien yhdistämismenetelmän avulla maaston valonsironnan suuntariippuvuutta voidaan kartoittaa laajemmilla alueilla kuin FIGIFIGO:a käyttäen. Kolmas mittalaite on virtuaalinen valkean valon LiDAR, jolla voidaan mitata laboratoriokohteen 3D rakenne yhdessä heijastusspektrien kanssa ([x,y,z,R(λ)]). Tutkimusjakson (2005 2011) aikana FIGIFIGO:a on käytetty lähes 400 kaukokartoituskohteen sironnan suuntariippuvuuden mittaamiseen. Näillä mittauksilla kerätty datakirjasto on yksi maailman suurimmista ja kattavimmistaan lajissaan. FIGIFIGO-mittauksia on hyödynnetty useissa tutkimuksissa esim. satelliitti havaintojen ja kaukokartoitus sensoreiden lennonaikaisessa kalibroinnissa ja validoinnissa, sekä ilmakuvauksen heijastuskerroinreferenssikohteiden kehittämisessä. Mittaustulokset on myös julkaistu tieteellisissä julkaisuissa laajentaen yleistä ymmärrystä kaukokartoituskohteiden valonsironnasta. Kaksi jälkimmäistä mittalaitetta ovat prototyyppejä joilla on testattu ja demonstroitu uutta tekniikkaa jota ei ole aiemmin hyödynnetty kaukokartoituksessa tällä tavoin. Molemmat mittauskonseptit tuottivat lupaavia tuloksia mahdollistaen uudentyyppisten mittausten tekemisen. Saadut tulokset antavat ymmärtää että mittauskonseptien kehittämistä kannattaa jatkaa ja on todennäköistä että tämän kaltaiset mittausmenetelmät tulevat jo lähitulevaisuudessa leviämään laajempaan käyttöön kaukokartoituksessa

    Kuhan kasvatus ruokakalaksi : kirjallisuuskatsaus

    Get PDF

    A Review: Remote Sensing Sensors

    Get PDF
    The cost of launching satellites is getting lower and lower due to the reusability of rockets (NASA, 2015) and using single missions to launch multiple satellites (up to 37, Russia, 2014). In addition, low-orbit satellite constellations have been employed in recent years. These trends indicate that satellite remote sensing has a promising future in acquiring high-resolution data with a low cost and in integrating high-resolution satellite imagery with ground-based sensor data for new applications. These facts have motivated us to develop a comprehensive survey of remote sensing sensor development, including the characteristics of sensors with respect to electromagnetic spectrums (EMSs), imaging and non-imaging sensors, potential research areas, current practices, and the future development of remote sensors.Peer reviewe

    Impact of flight altitude and cover orientation on Digital Surface Model (DSM) accuracy for flood damage assessment in Murcia (Spain) using a fixed-wing UAV

    Get PDF
    Soil erosion, rapid geomorphological change and vegetation degradation are major threats to the human and natural environment. Unmanned Aerial Systems (UAS) can be used as tools to provide detailed and accurate estimations of landscape change. The effect of flight strategy on the accuracy of UAS image data products, typically a digital surface model (DSM) and orthophoto, is unknown. Herein different flying altitudes (126-235 m) and area coverage orientations (N-S and SW-NE) are assessed in a semi-arid and medium-relief area where terraced and abandoned agricultural fields are heavily damaged by piping and gully erosion. The assessment was with respect to cell size, vertical and horizontal accuracy, absolute difference of DSM, and registration of recognizable landscape features. The results show increasing cell size (5-9 cm) with increasing altitude, and differences between elevation values (10-20 cm) for different flight directions. Vertical accuracy ranged 4-7 cm but showed no clear relationship with flight strategy, whilst horizontal error was stable (2-4 cm) for the different orthophotos. In all data sets, geomorphological features such as piping channels, rills and gullies and vegetation patches could be labeled by a technician. Finally, the datasets have been released in a public repository.</p

    Kaihi

    Get PDF
    KÄYPÄ HOITO -SUOSITUS (Päivitystiivistelmä

    Implementing an orthoplastic treatment protocol for open tibia fractures reduces complication rates in tertiary trauma unit

    Get PDF
    Introduction: Open tibia fracture (OTF) causes a considerable increase in morbidity and risk for complications compared to closed fractures. The most significant OTF complication leading to morbidity is commonly considered to be fracture-related infection (FRI). In September 2016, Tampere University Hospital (TAUH) introduced a treatment protocol for OTFs based on the BOAST 4 guideline. The aim of this study is to investigate the outcomes before and after implementation of the OTF treatment protocol. Materials and methods: A retrospective cohort study was conducted using handpicked data from the patient record databases of TAUH from May 1, 2007, to May 10, 2021. For patients with OTF, we collected descriptive information, known risk factors for FRI and nonunion, bony fixation method, possible soft tissue reconstruction method, information about the timing of internal fixation and soft tissue coverage, and timing of primary operation. As outcome measures, we collected information on FRI, reoperation due to non-union, flap failure, and secondary amputation. We then compared the incidence of complications before and after the implementation of the OTF treatment protocol at TAUH. Results: After predefined exclusions, a total of 203 patients with OTF were included. Of these, 141 were treated before and 62 after the implementation of the OTF treatment protocol. The FRI rate in the pre-protocol group was significantly higher compared to the protocol group (20.6% vs 1.6%, p = 0.0015). The incidence of reoperation due to nonunion was also significantly higher in the pre-protocol group (27.7% vs 9.7%, p = 0.0054). According to multivariable analysis, definitive fixation and soft tissue coverage performed in separate operations was an independent risk factor for both FRI and reoperation due to nonunion. Conclusions: After implementation, the BOAST 4 based OTF treatment protocol reduced the rate of FRI and reoperation due to nonunion in patients with OTF treated at TAUH during the study period. We, therefore, recommend the implementation of such a treatment protocol in all major trauma centers treating patients with OTF. Furthermore, we also recommend the immediate referral of patients with complex OTF from hospitals lacking the preconditions to provide BOAST 4 based treatment to specialized centers.Peer reviewe
    corecore