3,748 research outputs found

    Mediation effect of hope on the relationship between inner strength and self-management in patients after percutaneous coronary intervention

    Get PDF
    BackgroundEffective self-management can enhance a patient’s quality of life and delay disease progression. However, motivating patients to adhere to self-management behavior following percutaneous coronary intervention (PCI) remains a challenge. With the robust development of positive psychology and interdisciplinary research, the role of psychology factors in patients’ health behavior has increasingly garnered attention. This study, focusing on positive psychological qualities, aims to investigate the relationship between inner strength, hope, and self-management in patients post-PCI, and to analyze the mediating role of hope between inner strength and self-management.MethodsA cross-sectional survey was conducted among 216 PCI patients from a tertiary hospital in Nanjing. Research instruments included a self-designed general information questionnaire, the Inner Strength Scale (ISS), the Herth Hope Index (HHI), and the Coronary Self-Management Scale (CSMS). T-test, analysis of variance, Pearson’s correlation analysis, and mediating effect test were utilized for statistical analysis.ResultsThe average scores of the ISS, HHI, and CSMS were 81.46 ± 12.00, 35.94 ± 5.38, and 86.79 ± 14.84, respectively. Inner strength was positively correlated with hope and self-management (r = 0.867, r = 0.630, respectively; all P < 0.05), and hope was positively correlated with self-management (r = 0.671, P < 0.05). Moreover, hope had a complete mediating effect between inner strength and self-management (β = 0.630, P < 0.01).ConclusionThe inner strength, hope, and self-management of patients with PCI are at a moderate level. Inner strength primarily influences patients’ self-management behavior through hope, suggesting that medical staff can target hope to help patients build confidence in life after illness, form and accumulate inner strength, thereby promoting their self-management and improving prognosis

    C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart.

    Get PDF
    BACKGROUND: Obesity and diabetes mellitus adversely affect postischemic heart remodeling via incompletely understood mechanisms. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly identified adipokine exerting beneficial metabolic regulation, similar to adiponectin. The aim of the present study was to determine whether CTRP3 may regulate postischemic cardiac remodeling and cardiac dysfunction, and, if so, to elucidate the underlying mechanisms. METHODS AND RESULTS: Male adult mice were subjected to myocardial infarction (MI) via left anterior descending coronary artery occlusion. Both the effect of MI on endogenous CTRP3 expression/production and the effect of exogenous CTRP3 (adenovirus or recombinant CTRP3) replenishment on MI injury were investigated. MI significantly inhibited adipocyte CTRP3 expression and reduced the plasma CTRP3 level, reaching a nadir 3 days after MI. CTRP3 replenishment improved survival rate (P CONCLUSION: CTRP3 is a novel antiapoptotic, proangiogenic, and cardioprotective adipokine, the expression of which is significantly inhibited after MI

    Modeling the UBVRI time delays in Mrk 335

    Get PDF
    We develop a model of time delays between the continuum bands in the Narrow Line Seyfert 1 galaxy Mrk 335 to explain the observed delays measured in this source. We consider two geometries: an accretion disk with fully ionized warm absorber of considerable optical depth, located close to the symmetry axis, and an accretion disk with a hot corona. Both media lead to significant disk irradiation but the disk/corona geometry gives lower values of the time delays. Only the disk/corona models give results consistent with measurements of Sergeev et al., and a low value of the disk inclination is favored. The presence of an optically thick, fully ionized outflow is ruled out at the 2-sigma level.Comment: MNRAS (in press

    Systematic analysis of human microRNA divergence based on evolutionary emergence

    Get PDF
    AbstractMicroRNAs (miRNAs) play important roles in post-transcriptional gene expression control. To gain new insight into human miRNAs, we performed comprehensive sequence-based homology search for known human miRNAs to study the evolutionary distribution of human miRNAs. Furthermore, we carried out a series of studies to compare various features for different lineage-specific human miRNAs. Our results showed that major expansions of human miRNA genes coincide with the advent of vertebrates, mammals and primates. Further system-level analysis revealed significant differences in human miRNAs that arose from different evolutionary time points for a number of characteristics, implicating genetic and functional diversification for different human miRNAs during evolution. Our finds provide more useful knowledge for further exploring origins and evolution of human miRNA genes

    Spatially resolved Spectro-photometry of M81: Age, Metallicity and Reddening Maps

    Full text link
    In this paper, we present a multi-color photometric study of the nearby spiral galaxy M81, using images obtained with the Beijing Astronomical Observatory 60/90 cm Schmidt Telescope in 13 intermediate-band filters from 3800 to 10000{\AA}. The observations cover the whole area of M81 with a total integration of 51 hours from February 1995 to February 1997. This provides a multi-color map of M81 in pixels of 1\arcsec.7 \times 1\arcsec.7. Using theoretical stellar population synthesis models, we demonstrate that some BATC colors and color indices can be used to disentangle the age and metallicity effect. We compare in detail the observed properties of M81 with the predictions from population synthesis models and quantify the relative chemical abundance, age and reddening distributions for different components of M81. We find that the metallicity of M81 is about Z=0.03Z=0.03 with no significant difference over the whole galaxy. In contrast, an age gradient is found between stellar populations of the central regions and of the bulge and disk regions of M81: the stellar population in its central regions is older than 8 Gyr while the disk stars are considerably younger, 2\sim 2 Gyr. We also give the reddening distribution in M81. Some dust lanes are found in the galaxy bulge region and the reddening in the outer disk is higher than that in the central regions.Comment: Accepted for publication in AJ (May 2000 issue). 27 pages including 6 figures. Uses AASTeX aasms4 styl

    On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving

    Full text link
    The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, GPT-4V(ision), and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that GPT-4V demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: \url{https://github.com/PJLab-ADG/GPT4V-AD-Exploration

    A Sandwich Electrochemical Immunosensor Using Magnetic DNA Nanoprobes for Carcinoembryonic Antigen

    Get PDF
    A novel magnetic nanoparticle-based electrochemical immunoassay of carcinoembryonic antigen (CEA) was designed as a model using CEA antibody-functionalized magnetic beads [DNA/Fe3O4/ZrO2; Fe3O4 (core)/ZrO2 (shell) nano particles (ZMPs)] as immunosensing probes. To design the immunoassay, the CEA antibody and O-phenylenediamine (OPD) were initially immobilized on a chitosan/nano gold composite membrane on a glassy carbon electrode (GCE/CS-nano Au), which was used for CEA recognition. Then, horseradish peroxidase (HRP)-labeled anti-CEA antibodies (HRP-CEA Ab2) were bound to the surface of the synthesized magnetic ZMP nanoparticles as signal tag. Thus, the sandwich-type immune complex could be formed between secondary antibody (Ab2) modified DNA/ZMPs nanochains tagged by HRP and GCE/CS-nano Au. Unlike conventional nanoparticle-based electrochemical immunoassays, the recognition elements of this immunoassay included both electron mediators and enzyme labels, which obviously simplifies the electrochemical measurement process. The sandwich-type immunoassay format was used for online formation of the immunocomplex of CEA captured in the detection cell with an external magnet. The electrochemical signals derived from HRP during the reduction of H2O2 with OPD as electron mediator were measured. The method displayed a high sensitivity for CEA detection in the range of 0.008–200 ng/mL, with a detection limit of 5 pg/mL (estimated at a signal-to-noise ratio of 3). The precision, reproducibility, and stability of the immunoassay were good. The use of the assay was evaluated with clinical serum samples, and the results were in excellent accordance with those obtained using the standard enzyme-linked immunosorbent assay (ELISA) method. Thus, the magnetic nanoparticle-based assay format is a promising approach for clinical applications, and it could be further developed for the detection of other biomarkers in cancer diagnosis

    Confinement of carbon dots localizing to the ultrathin layered double hydroxides toward simultaneous triple-mode bioimaging and photothermal therapy

    Get PDF
    It is a great challenge to develop multifunctional nanocarriers for cancer diagnosis and therapy. Herein, versatile CDs/ICG-uLDHs nanovehicles for triple-modal fluorescence/photoacoustic/two-photon bioimaging and effective photothermal therapy were prepared via a facile self-assembly of red emission carbon dots (CDs), indocyanine green (ICG) with the ultrathin layered double hydroxides (uLDHs). Due to the J-aggregates of ICG constructed in the self-assembly process, CDs/ICG-uLDHs was able to stabilize the photothermal agent ICG and enhanced its photothermal efficiency. Furthermore, the unique confinement effect of uLDHs has extended the fluorescence lifetime of CDs in favor of bioimaging. Considering the excellent in vitro and in vivo phototherapeutics and multimodal imaging effects, this work provides a promising platform for the construction of multifunctional theranostic nanocarrier system for the cancer treatment

    Cold Accretion Disks and Lineless Quasars

    Full text link
    The optical-UV continuum of quasars is broadly consistent with the emission from a geometrically thin optically thick accretion disk (AD). The AD produces the ionizing continuum which powers the broad and narrow emission lines. The maximum AD effective temperature is given by Teff=fmax(Mdot/M^2)^1/4, where M is the black hole mass, Mdot the accretion rate, and fmax is set by the black hole spin a_*. For a low enough value of Mdot/M^2 the AD may become too cold to produce ionizing photons. Such an object will form a lineless quasar. This occurs for a local blackbody (BB) AD with a luminosity Lopt=10^46 erg/s for M>3.6E9 Msun, when a_*=0, and for M>1.4E10 Msun, when a_*=0.998. Using the AD based Mdot, derived from M and Lopt, and the reverberation based M, derived from Lopt and the Hbeta FWHM, v, gives Teff \propto Lopt^-0.13v^-1.45. Thus, Teff is mostly set by v. Quasars with a local BB AD become lineless for v> 8,000 km/s, when a_*=0, and for v> 16,000 km/s, when a_*=0.998. Higher values of v are required if the AD is hotter than a local BB. The AD becoming non-ionizing may explain why line emitting quasars with v>10,000 km/s are rare. Weak low ionization lines may still be present if the X-ray continuum is luminous enough, and such objects may form a population of weak emission line quasars (WLQ). If correct, such WLQ should show a steeply falling SED at lambda<1000A. Such an SED was observed by Hryniewicz et al. in SDSS J094533.99+100950.1, a WLQ observed down to 570A, which is well modeled by a rather cold AD SED. UV spectroscopy of z~1-2 quasars is required to eliminate potential intervening Lyman limit absorption by the intergalactic medium (IGM), and to explore if the SEDs of lineless quasars and some additional WLQ are also well fit by a cold AD SED.Comment: Accepted for publication in MNRA
    corecore