110 research outputs found

    Surface nanobubbles as a function of gas type

    Get PDF
    We experimentally investigate the nucleation of surface nanobubbles on PFDTS-coated silicon as a function of the specific gas dissolved in the water. In each case we restrict ourselves to equilibrium conditions (c=100c=100%, Tliquid=TsubstrateT_{liquid} = T_{substrate}). Not only is nanobubble nucleation a strong function of gas type, but there also exists an optimal system temperature of 3540oC\sim 35-40\mathrm{^oC} where nucleation is maximized, which is weakly dependent on gas type. We also find that contact angle is a function of nanobubble radius of curvature for all gas types investigated. Fitting this data allows us to describe a line tension which is dependent on the type of gas, indicating that the nanobubbles are sat on top of adsorbed gas molecules. The average line tension was τ0.8nN\tau \sim -0.8 \mathrm{nN}

    Assembly of high nuclearity clusters from a family of tripodal tris-carboxylate ligands

    Get PDF
    A family of four tris-carboxylic acid ligands 1,3,5-tris(4′-carboxybiphenyl-2-yl)benzene (H3L1), 1,3,5-tris-2-carboxyphenylbenzene (H3L2), 1,3,5-tris(4″-carboxy-para-terphenyl-2-yl)benzene (H3L3) and 1,3,5-tris(3′-carboxybiphenyl-2-yl)benzene (H3L4) have been synthesised and reacted with first row transition metal cations to give nine complexes which have been structurally characterised by X-ray crystallography. The ligands share a common design motif having three arms connected to a benzene core via three ortho-disubstituted phenyl linkers. The ligands vary in length and direction of the carboxylic acid functionalised arms and are all able to adopt tripodal conformations in which the three arms are directed facially. The structures of [Zn8(μ4-O)(L1)4(HCO2)2(H2O)0.33(DMF)2] (1a-Zn), [Co14(L2)6((μ3-OH)8(HCO2)2(DMF)4(H2O)6] (2-Co), [Ni14(L2)6(μ3-OH)8(HCO2)2(DMF)4(H2O)6] (2-Ni), [Zn8(μ4-O)(L3)4(DMF)(H2O)4(NO3)2] (3-Zn), [Ni5(μ-OH)4(L2)2(H2O)6(DMF)4] (5-Ni), [Co8(μ4-O)4(L4)4(DMF)3(H2O)] (6-Co) and Fe3(μ3-O)(L4)2(H2O)(DMF)2)] (7-Fe) contain polynuclear clusters surrounded by ligands (L1–4)3− in tripodal conformations. The structure of [Zn2(HL1)2(DMF)4] (1b-Zn) shows it to be a binuclear complex in which the two ligands (HL2)2− are partially deprotonated whilst {[Zn3(L2)2(DMF)(H2O)(C5H5N)]·6(DMF)}n (4-Zn) is a 2D coordination network containing {Zn2(RCO2)4(solv)2} paddlewheel units. The conformations of the ligand arms in the complexes have been analysed, confirming that the shared ortho-disubstituted phenyl ring motif is a powerful and versatile tool for designing ligands able to form high-nuclearity coordination clusters when reacted with transition metal cations

    Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology

    Get PDF
    Porous coordination polymers are well known for their easily tailored framework structures and corresponding properties. Although systematic modulations of pore sizes of binary prototypes have gained great success, simultaneous adjustment of both pore size and shape of ternary prototypes remains unexplored, owing to the difficulty in controlling the self-assembly of multiple molecular building blocks. Here we show that simple geometry analysis can be used to estimate the influence of the linker lengths and length ratios on the synthesis/construction difficulties and framework stabilities of a highly symmetric, ternary prototype composed of a typical trinuclear metal cluster and two types of bridging carboxylate ligands. As predicted, systematic syntheses with 5×5 ligand combinations produced 13 highly porous isoreticular frameworks, which show not only systematic adjustment of pore volumes (0.49–2.04 cm3 g−1) and sizes (7.8–13.0 Å; 5.2–12.0 Å; 7.4–17.4 Å), but also anisotropic modulation of the pore shapes

    Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Get PDF
    The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic

    Multifunctional metal–organic frameworks: from academia to industrial applications

    Full text link
    corecore