226 research outputs found

    Timing analysis techniques at large core distances for multi-TeV gamma ray astronomy

    Full text link
    We present an analysis technique that uses the timing information of Cherenkov images from extensive air showers (EAS). Our emphasis is on distant, or large core distance gamma-ray induced showers at multi-TeV energies. Specifically, combining pixel timing information with an improved direction reconstruction algorithm, leads to improvements in angular and core resolution as large as ~40% and ~30%, respectively, when compared with the same algorithm without the use of timing. Above 10 TeV, this results in an angular resolution approaching 0.05 degrees, together with a core resolution better than ~15 m. The off-axis post-cut gamma-ray acceptance is energy dependent and its full width at half maximum ranges from 4 degrees to 8 degrees. For shower directions that are up to ~6 degrees off-axis, the angular resolution achieved by using timing information is comparable, around 100 TeV, to the on-axis angular resolution. The telescope specifications and layout we describe here are geared towards energies above 10 TeV. However, the methods can in principle be applied to other energies, given suitable telescope parameters. The 5-telescope cell investigated in this study could initially pave the way for a larger array of sparsely spaced telescopes in an effort to push the collection area to >10 km2. These results highlight the potential of a `sparse array' approach in effectively opening up the energy range above 10 TeV.Comment: Published in Astroparticle Physic

    The impact of height-adjustable desks and classroom prompts on classroom sitting time, social, and motivational factors among adolescents

    Full text link
    Purpose: This quasi-experimental study examined the impact of height-adjustable desks in combination with prompts to break up prolonged sitting time during class time and identified social and motivational factors associated with breaking up sitting time among adolescents. Teachers’ perceptions of strategies were also examined. Methods: Over 17 weeks, 1 classroom in a government secondary school in Melbourne, Australia, was equipped with 27 height-adjustable desks and prompts (posters and desk stickers) to break up classroom sitting time. Teachers received professional development in the use of the desks and prompts. One group of adolescents (n = 55) had 2–5 lessons/week using the height-adjustable desks in an intervention classroom, and a comparison group matched by year level and subject (n = 50) was taught in traditional “seated” classrooms. Adolescents wore an activPAL monitor at baseline (T0), 4 weeks (T1), and 17 weeks (T2) and completed a survey at T0 and T2. Six teachers participated in interviews at T2. Effect sizes were calculated (d). Results: Linear mixed models found that, compared to the traditional “seated” classrooms, the adolescents in the intervention classroom had significantly lower sitting time (T1: –9.7 min/lesson, d = –0.96; T2: –6.7 min/lesson, d = –0.70) and time spent in sitting bouts >15 min (T2: –11.2 min/lesson, d = –0.62), and had significantly higher standing time (T1: 7.3 min/lesson, d = 0.84; T2: 5.8 min/lesson, d = 0.91), number of breaks from sitting (T1: 1.3 breaks/lesson, d = 0.49; T2: 1.8 breaks/lesson, d = 0.67), and stepping time (T1: 2.5 min/lesson, d = 0.66). Intervention classroom adolescents reported greater habit strength (d = 0.58), self-efficacy for breaking up sitting time (d = 0.75), and indicated that having a teacher/classmate remind them to stand as helpful (d = 0.50). Conclusion: This intervention shows promise for targeting sitting behaviors in the classroom and indicates that incorporating social and motivational strategies may further enhance outcomes

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80∘80^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×10−51.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×10−32.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg⁡(E/eV)=18.5−19.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Validity and reliability of subjective methods to assess sedentary behaviour in adults: a systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Subjective measures of sedentary behaviour (SB) (i.e. questionnaires and diaries/logs) are widely implemented, and can be useful for capturing type and context of SBs. However, little is known about comparative validity and reliability. The aim of this systematic review and meta-analysis was to: 1) identify subjective methods to assess overall, domain- and behaviour-specific SB, and 2) examine the validity and reliability of these methods. METHODS: The databases MEDLINE, EMBASE and SPORTDiscus were searched up to March 2020. Inclusion criteria were: 1) assessment of SB, 2) evaluation of subjective measurement tools, 3) being performed in healthy adults, 4) manuscript written in English, and 5) paper was peer-reviewed. Data of validity and/or reliability measurements was extracted from included studies and a meta-analysis using random effects was performed to assess the pooled correlation coefficients of the validity. RESULTS: The systematic search resulted in 2423 hits. After excluding duplicates and screening on title and abstract, 82 studies were included with 75 self-reported measurement tools. There was wide variability in the measurement properties and quality of the studies. The criterion validity varied between poor-to-excellent (correlation coefficient [R] range - 0.01- 0.90) with logs/diaries (R = 0.63 [95%CI 0.48-0.78]) showing higher criterion validity compared to questionnaires (R = 0.35 [95%CI 0.32-0.39]). Furthermore, correlation coefficients of single- and multiple-item questionnaires were comparable (1-item R = 0.34; 2-to-9-items R = 0.35; ≄10-items R = 0.37). The reliability of SB measures was moderate-to-good, with the quality of these studies being mostly fair-to-good. CONCLUSION: Logs and diaries are recommended to validly and reliably assess self-reported SB. However, due to time and resources constraints, 1-item questionnaires may be preferred to subjectively assess SB in large-scale observations when showing similar validity and reliability compared to longer questionnaires. REGISTRATION NUMBER: CRD42018105994

    Evidence For A Mixed Mass Composition At The ‘ankle’ In The Cosmic-ray Spectrum

    Get PDF
    76228829
    • 

    corecore