12 research outputs found

    Acknowledgement to reviewers of fluids in 2018

    Get PDF

    The High-Risk Type 1 Diabetes HLA-DR and HLA-DQ Polymorphisms Are Differentially Associated With Growth and IGF-I Levels in Infancy: The Cambridge Baby Growth Study.

    No full text
    OBJECTIVE: This study explored the link between HLA polymorphisms that predispose to type 1 diabetes and birth size, infancy growth, and/or circulating IGF-I in a general population-based birth cohort. RESEARCH DESIGN AND METHODS: The Cambridge Baby Growth Study is a prospective observational birth cohort study that recruited 2,229 newborns for follow-up in infancy. Of these, 612 children had DNA available for genotyping single nucleotide polymorphisms in the HLA region that capture the highest risk of type 1 diabetes: rs17426593 for DR4, rs2187668 for DR3, and rs7454108 for DQ8. Multivariate linear regression models at critical ages (cross-sectional) and mixed-effects models (longitudinal) were performed under additive genetic effects to test for associations between HLA polymorphisms and infancy weight, length, skinfold thickness (indicator of adiposity), and concentrations of IGF-I and IGF-binding protein-3 (IGFBP-3). RESULTS: In longitudinal models, the minor allele of rs2187668 tagging DR3 was associated with faster linear growth (P = 0.007), which was more pronounced in boys (P = 3 Ă— 10-7) than girls (P = 0.07), and was also associated with increasing IGF-I (P = 0.002) and IGFBP-3 (P = 0.003) concentrations in infancy. Cross-sectionally, the minor alleles of rs7454108 tagging DQ8 and rs17426593 tagging DR4 were associated with lower IGF-I concentrations at age 12 months (P = 0.003) and greater skinfold thickness at age 24 months (P = 0.003), respectively. CONCLUSIONS: The variable associations of DR4, DR3, and DQ8 alleles with growth measures and IGF-I levels in infants from the general population could explain the heterogeneous growth trajectories observed in genetically at-risk cohorts. These findings could suggest distinct mechanisms involving endocrine pathways related to the HLA-conferred type 1 diabetes risk.This work was supported by the Medical Research Council (MR/K50127X/1) and the Raymond & Beverly Sackler Foundation. The CBGS has been funded by the European Union Framework 5 (QLK4-1999-01422), the Medical Research Council (7500001180, G1001995, U106179472) and the World Cancer Research Fund International (2004/03). K.K.O. is supported by the Medical Research Council (MC_UU_12015/2). DBD is supported by funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115797 (INNODIA) and No 945268 (INNODIA HARVEST)

    Targeting BMP signalling in cardiovascular disease and anaemia.

    No full text
    Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies
    corecore