141 research outputs found

    Hormonal responses to competition

    Get PDF
    S p o rts competitions have been employed to analy ze the influence of social confro n t ations on hormonal levels. Howeve r, results have been inconsistent. Seve ral va ri ables such as outcome, phy s i c a l exe rtion, mood and causal at t ri bution have been considered as important mediat o rs of this infl u e nc e. Our aim was to examine their role in the testosterone and cortisol responses to a real confro n t ation. To this end, twe l ve judoists who part i c i p ated in a competition between clubs we re studied. Results showed non significant diffe rences depending on outcome in hormones, physical exe rtion, mood and causal at t ri bution; only sat i s faction with the outcome being significant. Intere s t i n g ly, testoste rone response was positive ly associated with self-ap p raisal of perfo rmance and at t ri bution of outcome to personal effo rt. Cortisol response showed a ve ry consistent re l ationship with negat ive moo d. These findings support a clear association of competition-induced hormonal responses with cogni t ive and emotional aspects rather than with objective (outcome or physical exe rtion) ch a ra c t e ri stics of the situat i o n

    Ansiedad y respuestas electrofisiológicas a una tarea de estrés mental tras un ejercicio aeróbico máximo

    Get PDF
    El objetivo del presente trabajo fue analizar las relaciones de la ansiedad con determinadas respuestas fisiológicas a una tarea de estrés mental. Para ello, se tomó una muestra de deportistas de élite varones de la Comunidad Valenciana de diferentes disciplinas deportivas. De acuerdo con las puntuaciones que los sujetos obtuvieron en las escalas STAI-R y STAI-E, completadas antes y después respectivamente, de una ergometría máxima, fueron separados en dos grupos extremos de alta y baja ansiedad. Se registraron de forma computerizada la frecuencia cardíaca y la actividad electrodérmica antes, durante y después de una tarea Stroop en ordenador. Los niveles basales de actividad electrodérmica fueron más elevados en los sujetos con ansiedad-estado alta durante el periodo anterior a la realización de la tarea y en la fase de recuperación. Sin embargo, la frecuencia cardíaca no fue diferente en función de la ansiedad, aunque sí estaba relacionada positivamente con la ejecución en tarea

    Una especie nueva de avispa gallĂ­cola para MĂ©xico: Andricus sphaericus Pujade-Villar n. sp. (Hymenoptera: Cynipidae: Cynipini)

    Get PDF
    Se describe una nueva especie de cinípido gallícola de México, Andricus sphaericus Pujade-Villar n. sp., solo conocida por su forma sexual. Induce agallas en las hojas de Quercus rugosa Née. Representa la segunda colecta de una generación sexual del género Andricus para México. Se proporcionan datos referidos a la diagnosis, distribución y biología de esta nueva especie

    Proteomic analysis of calcium-enriched sol-gel biomaterials

    Get PDF
    [EN] Calcium is an element widely used in the development of biomaterials for bone tissue engineering as it plays important roles in bone metabolism and blood coagulation. The Ca ions can condition the microenvironment at the tissue-material interface, affecting the protein deposition process and cell responses. The aim of this study was to analyze the changes in the patterns of protein adsorption on the silica hybrid biomaterials supplemented with different amounts of CaCl2, which can function as release vehicles. This characterization was carried out by incubating the Ca-biomaterials with human serum. LC-MS/MS analysis was used to characterize the adsorbed protein layers and compile a list of proteins whose affinity for the surfaces might depend on the CaCl2 content. The attachment of pro- and anti-clotting proteins, such as THRB, ANT3, and PROC, increased significantly on the Ca-materials. Similarly, VTNC and APOE, proteins directly involved on osteogenic processes, attached preferentially to these surfaces. To assess correlations with the proteomic data, these formulations were tested in vitro regarding their osteogenic and inflammatory potential, employing MC3T3-E1 and RAW 264.7 cell lines, respectively. The results confirmed a Ca dose-dependent osteogenic and inflammatory behavior of the materials employed, in accordance with the protein attachment patterns.This work was supported by MINECO [MAT2017-86043-R]; Universitat Jaume I [Grant numbers Predoc/2014/25, UJI-B2017-37]; Basque Government [Grant numbers IT611-13, Predoc/2016/1/0141]; University of the Basque Country [Grant number UFI11/56]. CIC bioGUNE is supported by Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia County; The ProteoRed-ISCIII (Grant PRB3 IPT17/0019); CIBERehd Network, and Severo Ochoa Grant (SEV-2016-0644). Authors would like to thank Antonio Coso and Jaime Franco (GMI-Ilerimplant) for their inestimable contribution to this study, and Raquel Oliver, Jose Ortega (UJI) and Iraide Escobes (CIC bioGUNE) for their valuable technical assistance.Romero-Gavilán, F.; Araújo-Gomes, N.; Cerqueira, A.; García-Arnáez, I.; Martínez-Ramos, C.; Azkargorta, M.; Iloro, I.... (2019). Proteomic analysis of calcium-enriched sol-gel biomaterials. JBIC Journal of Biological Inorganic Chemistry. 24(4):563-574. https://doi.org/10.1007/s00775-019-01662-5S563574244Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648. https://doi.org/10.1038/27094Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004Flynn A (2003) The role of dietary calcium in bone health. Proc Nutr Soc 62:851–858. https://doi.org/10.1079/PNS2003301Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576. https://doi.org/10.1016/j.bone.2009.07.082Honda Y, Fitzsimmons RJ, Baylink DJ, Mohan S (1995) Effects of extracellular calcium on insulin-like growth factor II in human bone cells. J Bone Miner Res 10:1660–1665. https://doi.org/10.1002/jbmr.5650101108Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718. https://doi.org/10.1007/s00441-014-1918-5Habibovic P, Barralet JE (2011) Bioinorganics and biomaterials: bone repair. Acta Biomater 32:3013–3026. https://doi.org/10.1016/j.actbio.2011.03.027Oshiro Junior J, Paiva Abuçafy M, Berbel Manaia E et al (2016) Drug delivery systems obtained from silica based organic-inorganic hybrids. Polymers (Basel) 8:91. https://doi.org/10.3390/polym8040091Jones JR (2015) Reprint of: review of bioactive glass: from hench to hybrids. Acta Biomater 23:S53–S82. https://doi.org/10.1016/j.actbio.2015.07.019Romero-Gavilán F, Barros-Silva S, García-Cañadas J et al (2016) Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. J Non Cryst Solids 453:66–73. https://doi.org/10.1016/j.jnoncrysol.2016.09.026Martínez-Ibáñez M, Juan-Díaz MJ, Lara-Saez I et al (2016) Biological characterization of a new silicon based coating developed for dental implants. J Mater Sci Mater Med 27:80. https://doi.org/10.1007/s10856-016-5690-9Martínez-Ibáñez M, Murthy NS, Mao Y et al (2018) Enhancement of plasma protein adsorption and osteogenesis of hMSCs by functionalized siloxane coatings for titanium implants. J Biomed Mater Res Part B Appl Biomater 106:1138–1147. https://doi.org/10.1002/jbm.b.33889Salinas AJ, Merino JM, Babonneau F et al (2007) Microstructure and Macroscopic Properties of Bioactive CaO–SiO2–PDMS Hybrids. J Biomed Mater Res B Appl Biomater 81B:274–282. https://doi.org/10.1002/jbm.b.30663Almeida JC, Wacha A, Gomes PS et al (2016) A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair. Mater Sci Eng, C 62:429–438. https://doi.org/10.1016/j.msec.2016.01.083Valliant EM, Romer F, Wang D et al (2013) Bioactivity in silica/poly(c-glutamic acid) sol-gel hybrids through calcium chelation. Acta Biomater 9:7662–7671. https://doi.org/10.1016/j.actbio.2013.04.037Shirosaki Y, Tsuru K, Hayakawa S et al (2005) In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials 26:485–493. https://doi.org/10.1016/j.biomaterials.2004.02.056Romero-Gavilán F, Gomes NC, Ródenas J et al (2017) Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling 33:98–111. https://doi.org/10.1080/08927014.2016.1259414Hirsh SL, McKenzie DR, Nosworthy NJ et al (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces 103:395–404. https://doi.org/10.1016/j.colsurfb.2012.10.039Chen Z, Klein T, Murray RZ et al (2015) Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 19:304–321. https://doi.org/10.1016/j.mattod.2015.11.004Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I et al (2018) Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem 23:459–470. https://doi.org/10.1007/s00775-018-1553-9Romero-Gavilán F, Sanchez-Pérez AM, Araújo-Gomes N et al (2017) Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling 33:676–689. https://doi.org/10.1080/08927014.2017.1356289Araújo-Gomes N, Romero-Gavilán F, Sanchez-Pérez AM et al (2018) Characterization of serum proteins attached to distinct sol-gel hybrid surfaces. J Biomed Mater Res Part B Appl Biomater 106:1477–1485. https://doi.org/10.1002/jbm.b.33954Romero-Gavilan F, Araújo-Gomes N, Sánchez-Pérez AM et al (2017) Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surfaces B Biointerfaces 162:316–325. https://doi.org/10.1016/j.colsurfb.2017.11.072Shiu HT, Goss B, Lutton C et al (2014) Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng Part B Rev 20:697–712. https://doi.org/10.1089/ten.teb.2013.0709Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:3–8. https://doi.org/10.1038/NMETH.1322Dvorak MM, Riccardi D (2004) Ca2 + as an extracellular signal in bone. Cell Calcium 35:249–255. https://doi.org/10.1016/j.ceca.2003.10.014Cho NH, Seong SY (2009) Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology 128:479–486. https://doi.org/10.1111/j.1365-2567.2008.03002.xMeerasa A, Huang JG, Gu FX (2013) Human serum lipoproteins influence protein deposition patterns on nanoparticle surfaces. ACS Appl Mater Interfaces 5:489–493. https://doi.org/10.1021/am302554qBaitsch D, Bock HH, Engel T et al (2011) Apolipoprotein e induces antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol 31:1160–1168. https://doi.org/10.1161/ATVBAHA.111.222745Niemeier A, Schinke T, Heeren J, Amling M (2012) The role of Apolipoprotein E in bone metabolism. Bone 50:518–524. https://doi.org/10.1016/j.bone.2011.07.015Kim WS, Kim HJ, Lee ZH et al (2013) Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB. Exp Cell Res 319:436–446. https://doi.org/10.1016/j.yexcr.2012.12.004Emsley J, White HE, O’Hara BP et al (1994) Structure of pentameric human serum amyloid P component. Nature 367:338–345Poulsen ET, Pedersen KW, Marzeda AM, Enghild JJ (2017) Serum amyloid P component (SAP) interactome in human plasma containing physiological calcium levels. Biochemistry 56:896–902. https://doi.org/10.1021/acs.biochem.6b01027Bottazzi B, Inforzato A, Messa M et al (2016) The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol 64:1416–1427. https://doi.org/10.1016/j.jhep.2016.02.029Mollnes TE, Kirschfink M (2006) Strategies of therapeutic complement inhibition. Mol Immunol 43:107–121. https://doi.org/10.1016/j.molimm.2005.06.014Gessmann J, Seybold D, Peter E et al (2013) Plasma clots gelled by different amounts of calcium for stem cell delivery. Langenbeck’s Arch Surg 398:161–167. https://doi.org/10.1007/s00423-012-1015-8Scheraga HA (2004) The thrombin-fibrinogen interaction. Biophys Chem 112:117–130. https://doi.org/10.1016/j.bpc.2004.07.011Chu AJ (2010) Blood coagulation as an intrinsic pathway for proinflammation: a mini review. Inflamm Allergy Drug Targets 9:32–44. https://doi.org/10.2174/187152810791292890Suleiman L, Négrier C, Boukerche H (2013) Protein S: a multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol 88:637–654. https://doi.org/10.1016/j.critrevonc.2013.07.004Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359:938–949. https://doi.org/10.1056/NEJMra0801082Biltoft D, Gram JB, Larsen A et al (2017) Fast form alpha-2-macroglobulin—a marker for protease activation in plasma exposed to artificial surfaces. Clin Biochem 50:1203–1208. https://doi.org/10.1016/j.clinbiochem.2017.09.002Cvirn G, Gallistl S, Koestenberger M et al (2002) Alpha 2-macroglobulin enhances prothrombin activation and thrombin potential by inhibiting the anticoagulant protein C/protein S system in cord and adult plasma. Thromb Res 105:433–439. https://doi.org/10.1016/S0049-3848(02)00042-7Vogler EA, Siedlecki CA (2009) Contact activation of blood-plasma coagulation. Biomaterials 30:1857–1869. https://doi.org/10.1016/j.biomaterials.2008.12.041Leavesley DI, Kashyap AS, Croll T et al (2013) Vitronectin—master controller or micromanager? IUBMB Life 65:807–818. https://doi.org/10.1002/iub.1203Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347:347–357. https://doi.org/10.1016/j.bbrc.2006.06.110Cacchioli A, Ravanetti F, Bagno A et al (2009) Human vitronectin-derived peptide covalently grafted onto titanium surface improves osteogenic activity: a pilot in vivo study on rabbits. Tissue Eng Part A 15:2017–2026. https://doi.org/10.1089/ten.tea.2008.054

    Signs of Overload After an Intensified Training

    Get PDF
    [EN] This study investigated eff ects of a 9-week intensified aerobic training and 3-weeks of recovery on signs of overload in 9 healthy active young males. Blood and saliva samples were collected and psychological questionnaires were administered during baseline (T1), intermediate load (T2), maximal load (T3), and recovery (T4) periods. Maximal oxygen uptake increased and blood lactate concentration decreased in T3, while running time in a 3 000 m track fi eld test was significantly shorter. No signifi cant changes were found in hematocrit, haemoglobin concentration, white blood cell count, lactate dehydrogenase, transaminases, interleukin-6, tumour necrosis factor- α , myeloperoxidase and markers of oxidative stress in plasma, or salivary cortisol and testosterone. Increases in diff erent negative aff ectscales and in the total mood disturbance score of the Profi le of Mood States were observed during T3. Scores in the stress scales of the Recovery- Stress Questionnaire for Athletes and in the State Anxiety Scale of the State-Trait Anxiety Inventory also showed signifi cant increases during T3. The lack of eff ects in biomarkers together with the changes observed in psychological assessment indicates that an intensifi ed training can produce psychological disturbances prone to early overreaching development. Additionally, it seems that psychological parameters are sensitive markers to detect stress produced by load increases.SIThis work was supported by the Acción Estratégica Sobre el Deporte, Spain (grants n ° 2006-56141-C03-01 to J. G., n ° 2006- 56141-C03-02 to S.M., and n ° 2006-56141-C03-03 to F.S.

    Recent developments and market opportunities for IPM in greenhouse tomatoes in southern Europe; Consequences for advanced IPM toolboxes and greenhouse engineering

    Get PDF
    The market for greenhouse tomatoes requires a production system with lower use and risks of pesticides. These requirements culminate in the tight restrictions on residues for German retailers, both in number and in levels of residues. Germany is an important import country for tomatoes because of the size of the German market. Furthermore, exports to Germany entail a price premium. For that reason the revenues of IPM in greenhouse tomatoes are more important than the costs. Consequently, the experiments in task 3 and the ex post assessment in task 4 of work package 7 of the Pure programme should focus on IPM strat egies by which the German residue restrictions can be respected

    Potential therapeutic effects of an ayahuasca-inspired N,N-DMT and harmine formulation: a controlled trial in healthy subjects

    Get PDF
    Background: There is growing scientific evidence for the therapeutic benefits of the Amazonian plant-based psychedelic “ayahuasca” for neuropsychiatric disorders such as depression and anxiety. However, there are certain challenges when incorporating botanical ayahuasca into biomedical research and clinical therapy environments. Formulations inspired by ayahuasca, which contain specific and standardized active components, are a potential remedy. Methods: We investigated subjective acute and persisting effects of a novel formulation containing the reversible monoamine oxidase inhibitor harmine (orodispersible tablet containing 100 mg MAO-I) and N,N-dimethyltryptamine (incremental intranasal dosing of up to 100 mg DMT), compared with two other conditions, namely harmine alone and placebo, in a crossover RCT in 31 healthy male subjects. Results: DMT + harmine, but not harmine alone, induced a psychedelic experience assessed with the 5D-ASC rating scale [global score: F(2,60) = 80.21, p < 0.001] and acute experience sampling items over time, characterized by psychological insights [PIQ, F(2,58.5) = 28.514, p < 0.001], emotional breakthroughs [EBI, F(2,60) = 26.509, p < 0.001], and low scores on the challenging experience questionnaire [CEQ, F(2,60) = 12.84, p < 0.001]. Participants attributed personal and spiritual significance to the experience (GSR) with mainly positive persisting effects (PEQ) at 1- and 4-months follow-up. Acute drug effects correlated positively with persisting effects. We found no changes in trait measures of personality, psychological flexibility, or general well-being, and no increases in psychopathology (SCL-90-R) were reported. Discussion and Conclusion: Our results suggest that the experience induced by the standardized DMT + harmine formulation induces a phenomenologically rich psychedelic experience, demonstrates good psychological safety and tolerability, is well tolerated, and induces beneficial psychological processes that could possibly support psychotherapy. Further studies are required to investigate the psychotherapeutic potential in patients

    HimenĂłpteros asociados a las agallas de Andricus quercuslanigera (Hymenoptera: Cynipidae, Chalcidoidea) de Sierra de Guadalupe, estado de MĂ©xico.

    Get PDF
    Las agallas en Quercus se consideran un microecosistema, debido a que en ellas se asocian diferentes grupos de avispas: los Cynipini (Cynipidae) como inductores, los Synergini y Ceroptresini (Cynipidae) como inquilinos y los Chalcidoidea como parasitoides o hiperparasitoides. En México se han descrito 184 especies de cinípidos, sin embargo, se conoce poco acerca de la fauna asociada (inquilinos y calcidoídea) y de su ecología. En este estudio se da a conocer la fauna asociada a agallas inducidas por Andricus quercuslanigera (= A. linaria) en Quercus rugosa. Se recolectaron 1.096 agallas emergieron 367 especímenes: 108 A. quercuslanigera (Cynipini), 130 Synergus (Synergini), 6 Eupelmus (Eupelmidae), 10 Eurytoma (Eurytomidae), 96 Acaenacis (Pteromalidae), 13 Ormyrus (Ormyridae) y 4 Torymus (Torymidae). El género Acaenacis se cita por primera vez para la fauna mexicana

    Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy.

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.J.A.C. acknowledges funding from the Ministerio de Ciencia e Innovación (MCIN) through grants BIO2014– 54768-P, BIO2017–83640-P (AEI/FEDER, UE), EIN2019–102966, RYC-2014–16604, and BFU2017–90692­ REDT, the European Research Area Network on Cardiovascular Diseases (ERA-CVD/ISCIII, MINOTAUR, AC16/00045), and the Comunidad de Madrid (consortium Tec4Bio-CM, S2018/NMT-4443, FEDER). This work was supported by NIH grants RM1 GM33289 and HL117138 to J.A.S.; a Stanford Dean’s Postdoctoral Fellowship to D.P. and N.N.; and a Stanford Maternal and Child Health Research Institute (MCHRI) Postdoctoral Fellowship (1220552–140-DHPEU) to N.N. Financial support to D.D.S. comes from Eusko Jaurlaritza (Basque Government) through the project IT1254–19, and grants RYC-2016–19590 and PGC2018–099321-B-I00 from the MCIN (FEDER). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), MCIN, and the Pro CNIC Foundation and was a Severo Ochoa Center of Excellence (SEV-2015–0505). We acknowledge funding from ISCIII to the Centro de Investigación Biomédica en Red (CIBERCV), CB16/11/00425. C.S.C. is the recipient of an FPI-SO predoctoral fellowship, BES-2016–076638. M.R.P. was the recipient of a Ph.D. fellowship from the Italian Ministry of Education, Universities and Research (MIUR). C.P.L. was a recipient of a CNIC Master Fellowship. We thank N. Vicente for excellent technical support (through grant PEJ16/MED/TL-1593 from Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid and the European Social Fund). We thank the Spectroscopy and Nuclear Magnetic Resonance Core Unit at CNIO for access to CD instrumentation and discussion about protein binding assays. We thank A. Thompson and S. Day for their insights. We thank all members of the Molecular Mechanics of the Cardiovascular System team for helpful discussions and the contribution of five anonymous reviewers.S
    • …
    corecore