18 research outputs found

    Extraction of the frequency moments of spectral densities from imaginary-time correlation function data

    Full text link
    We introduce an exact framework to compute the positive frequency moments M(α)(q)=ωαM^{(\alpha)}(\mathbf{q})=\braket{\omega^\alpha} of different dynamic properties from imaginary-time quantum Monte Carlo data. As a practical example, we obtain the first five moments of the dynamic structure factor S(q,ω)S(\mathbf{q},\omega) of the uniform electron gas at the electronic Fermi temperature based on \emph{ab initio} path integral Monte Carlo simulations. We find excellent agreement with known sum rules for α=1,3\alpha=1,3, and, to our knowledge, present the first results for α=2,4,5\alpha=2,4,5. Our idea can be straightforwardly generalized to other dynamic properties such as the single-particle spectral function A(q,ω)A(\mathbf{q},\omega), and will be useful for a number of applications, including the study of ultracold atoms, exotic warm dense matter, and condensed matter systems

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    A giant exoplanet orbiting a very-low-mass star challenges planet formation models

    Get PDF
    Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought

    CARMENES: high-resolution spectra and precise radial velocities in the red and infrared

    Get PDF
    SPIE Astronomical Telescopes + Instrumentation (2018, Austin, Texas, United States

    Determination of quantum numbers for several excited charmed mesons observed in B- -> D*(+)pi(-) pi(-) decays

    Get PDF
    A four-body amplitude analysis of the B − → D * + π − π − decay is performed, where fractions and relative phases of the various resonances contributing to the decay are measured. Several quasi-model-independent analyses are performed aimed at searching for the presence of new states and establishing the quantum numbers of previously observed charmed meson resonances. In particular the resonance parameters and quantum numbers are determined for the D 1 ( 2420 ) , D 1 ( 2430 ) , D 0 ( 2550 ) , D ∗ 1 ( 2600 ) , D 2 ( 2740 ) and D ∗ 3 ( 2750 ) states. The mixing between the D 1 ( 2420 ) and D 1 ( 2430 ) resonances is studied and the mixing parameters are measured. The dataset corresponds to an integrated luminosity of 4.7     fb − 1 , collected in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV with the LHCb detector

    Espirales de reflexividad crítica y propositiva para escribir la educación media de Bogotá

    Get PDF
    399 p. Libro digita

    Study of coherent J/ψ production in lead-lead collisions at √sNN = 5 TeV with the LHCb experiment

    No full text

    Search for the lepton-flavour-violating decays Bs0τ±μB^{0}_{s}\to\tau^{\pm}\mu^{\mp} and B0τ±μB^{0}\to\tau^{\pm}\mu^{\mp}

    No full text

    Observation of the decay Bs0χc2K+K {\overline{B}}_s^0\to {\chi}_{c2}{K}^{+}{K}^{-} in the ϕ mass region

    No full text
    corecore