183 research outputs found

    A Protein Profile of Visceral Adipose Tissues Linked to Early Pathogenesis of Type 2 Diabetes Mellitus

    Get PDF
    Adipose tissue is increasingly recognized as an endocrine organ playing important pathophysiological roles in metabolic abnormalities, such as obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). In particular, visceral adipose tissue (VAT), as opposed to subcutaneous adipose tissue, is closely linked to the pathogenesis of insulin resistance and T2DM. Despite the importance of VAT, its molecular signatures related to the pathogenesis of T2DM have not been systematically explored. Here, we present comprehensive proteomic analysis of VATs in drug-naïve early T2DM patients and subjects with normal glucose tolerance. A total of 4,707 proteins were identified in LC-MS/MS experiments. Among them, 444 increased in abundance in T2DM and 328 decreased. They are involved in T2DM-related processes including inflammatory responses, peroxisome proliferator-activated receptor signaling, oxidative phosphorylation, fatty acid oxidation, and glucose metabolism. Of these proteins, we selected 11 VAT proteins that can represent alteration in early T2DM patients. Among them, up-regulation of FABP4, C1QA, S100A8, and SORBS1 and down-regulation of ACADL and PLIN4 were confirmed in VAT samples of independent early T2DM patients using Western blot. In summary, our profiling provided a comprehensive basis for understanding the link of a protein profile of VAT to early pathogenesis of T2DM. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.1

    Gallbladder pseudolithiasis caused by ceftriaxone in young adult

    Get PDF
    Ceftriaxone is a commonly used antibiotic due to some of its advantages. Reversible gallbladder (GB) sludge or stone has been reported after ceftriaxone therapy. Most of these patients have no symptom, but the GB sludge or stone can sometimes cause cholecystitis. We experienced two patients who had newly developed GB stones after ceftriaxone therapy for diverticulitis and pneumonia, and this resolved spontaneously 1 month after discontinuation of the drug. Awareness of this complication could help to prevent unnecessary cholecystectomy

    Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway

    Get PDF
    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may contribute to the relief of diabetes symptoms and should be regarded as an excellent candidate for a diabetes treatment

    The Antibacterial Assay of Tectorigenin with Detergents or ATPase Inhibitors against Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Tectorigenin (TTR) is an O-methylated isoflavone derived from the rhizome of Belamacanda chinensis (L.) DC. It is known to perform a wide spectrum of biological activities such as antioxidant, anti-inflammatory, anti-tumor. The aim of this study is to examine the mechanism of antibacterial activity of TTR against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA activity of TTR was analyzed in combination assays with detergent, ATPase inhibitors, and peptidoglycan (PGN) derived from S. aureus. Transmission electron microscopy (TEM) was used to monitor survival characteristics and changes in S. aureus morphology. The MIC values of TTR against all the tested strains were 125 μg/mL. The OD(600) of each suspension treated with a combination of Triton X-100, DCCD, and NaN3 with TTR (1/10 × MIC) had been reduced from 68% to 80%, compared to the TTR alone. At a concentration of 125 μg/mL, PGN blocked antibacterial activity of TTR. This study indicates that anti-MRSA action of TTR is closely related to cytoplasmic membrane permeability and ABC transporter, and PGN at 125 μg/mL directly bind to and inhibit TTR at 62.5 μg/mL. These results can be important indication in study on antimicrobial activity mechanism against multidrug resistant strains

    Determination of Malignant and Invasive Predictors in Branch Duct Type Intraductal Papillary Mucinous Neoplasms of the Pancreas: A Suggested Scoring Formula

    Get PDF
    Prediction of malignancy or invasiveness of branch duct type intraductal papillary mucinous neoplasm (Br-IPMN) is difficult, and proper treatment strategy has not been well established. The authors investigated the characteristics of Br-IPMN and explored its malignancy or invasiveness predicting factors to suggest a scoring formula for predicting pathologic results. From 1994 to 2008, 237 patients who were diagnosed as Br-IPMN at 11 tertiary referral centers in Korea were retrospectively reviewed. The patients' mean age was 63.1 ± 9.2 yr. One hundred ninty-eight (83.5%) patients had nonmalignant IPMN (81 adenoma, 117 borderline atypia), and 39 (16.5%) had malignant IPMN (13 carcinoma in situ, 26 invasive carcinoma). Cyst size and mural nodule were malignancy determining factors by multivariate analysis. Elevated CEA, cyst size and mural nodule were factors determining invasiveness by multivariate analysis. Using the regression coefficient for significant predictors on multivariate analysis, we constructed a malignancy-predicting scoring formula: 22.4 (mural nodule [0 or 1]) + 0.5 (cyst size [mm]). In invasive IPMN, the formula was expressed as invasiveness-predicting score = 36.6 (mural nodule [0 or 1]) + 32.2 (elevated serum CEA [0 or 1]) + 0.6 (cyst size [mm]). Here we present a scoring formula for prediction of malignancy or invasiveness of Br-IPMN which can be used to determine a proper treatment strategy

    Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review

    Get PDF
    Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance
    corecore