71 research outputs found

    Genomics, Lifestyles and Future Prospects of Wood-Decay and Litter-Decomposing Basidiomycota

    Get PDF
    Saprobic (saprotrophic and saprophytic) wood-decay fungi are in majority species belonging to the fungal phylum Basidiomycota, whereas saprobic plant litter-decomposing fungi are species of both the Basidiomycota and the second Dikarya phylum Ascomycota. Wood-colonizing white rot and brown rot fungi are principally polypore, gilled pleurotoid, or corticioid Basidiomycota species of the class Agaricomycetes, which also includes forest and grassland soil-inhabiting and litter-decomposing mushroom species. In this chapter, examples of lignocellulose degradation patterns are presented in the current view of genome sequencing and comparative genomics of fungal wood-decay enzymes. Specific attention is given to the model white rot fungus, lignin-degrading species Phanerochaete chrysosporium and its wood decay-related gene expression (transcriptomics) on lignocellulose substrates. Types of fungal decay patterns on wood and plant lignocellulose are discussed in the view of fungal lifestyle strategies. Potentiality of the plant biomass-decomposing Basidiomycota species, their secreted enzymes and respective lignocellulose-attacking genes is evaluated in regard to development of biotechnological and industrial applications.Peer reviewe

    Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA, and ABTS: Effect of assay conditions and soil type

    Full text link
    Microbial phenol oxidases and peroxidases mediate biogeochemical processes in soils, including microbial acquisition of carbon and nitrogen, lignin degradation, carbon mineralization and sequestration, and dissolved organic carbon export. Measuring oxidative enzyme activities in soils is more problematic than assaying hydrolytic enzyme activities because of the non-specific, free radical nature of the reactions and complex interactions between enzymes, assay substrates, and the soil matrix. We compared three substrates commonly used to assay phenol oxidase and peroxidase in soil: pyrogallol (PYGL, 1,2,3-trihydroxybenzene), l-DOPA (l-3,4-dihydroxyphenylalanine), and ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid). We measured substrate oxidation in three soils across a pH gradient from 3.0 to 10.0 to determine the pH optimum for each substrate. In addition, we compared activities across 17 soils using the three substrates. In general, activities on the substrates followed the trend PYGL>. l-DOPA>ABTS and were inversely related to substrate redox potential. PYGL and ABTS were not suitable substrates at pH>5, and ABTS oxidation often declined with addition of peroxide to the assay. Absolute and relative oxidation rates varied widely among substrates in relation to soil type and assay pH. We also tested whether autoclaved or combusted soils could be used as negative controls for the influence of abiotic factors (e.g., soil mineralogy) on oxidative activity. However, neither autoclaving nor combustion produced reliable negative controls because substrate oxidation still occurred; in some cases, these treatments enhanced substrate oxidation rates. For broad scale studies, we recommend that investigators use all three substrates to assess soil oxidation potentials. For focused studies, we recommend evaluating substrates before choosing a single option, and we recommend assays at both the soil pH and a reference pH (e.g., pH 5.0) to determine the effect of assay pH on oxidase activity. These recommendations should contribute to greater comparability of oxidase potential activities across studies. © 2013 Elsevier Ltd

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Fungi associated with beetles dispersing from dead wood – Let's take the beetle bus!

    No full text
    Spore characteristics of wood-inhabiting fungi suggest that wind is their predominant dispersal vector. However, since they are restricted to ephemeral habitats, colonizing new patches should benefit from dispersal by animals with similar habitat preferences because the directed, resource-searching movement of animals increases the likelihood of reaching suitable habitats. Here we determine which fungal guilds are carried by wood-inhabiting beetles and what influences beetle-associated fungal communities. High-throughput sequencing identified >1800 fungal taxa from beetle communities that emerged from 64 experimental logs. Beetle-associated fungi included mutualistic, decomposing, pathogenic and mycorrhizal fungi; decomposers were the most diverse. Partial-procrustes analysis revealed that the total beetle-associated community and mutualists were correlated (p <= 0.05) with beetle community composition and decomposers were marginally correlated (p <= 0.10) with beetle community composition. All three groups were marginally correlated with the total fungal communities that inhabit the dead wood. Our results show that beetles carry a broad range of wood-inhabiting fungi and beetle-associated fungal communities are determined by environmental factors and the vectoring beetle community and to some degree by the fungal source community. This suggests that wood-inhabiting beetles contribute to fungal dispersal, including directed dispersal, which could affect fungal community assembly and ecosystem processes like wood decomposition

    Soil compartments (bulk soil, litter, root and rhizosphere) as main drivers of soil protistan communities distribution in forests with different nitrogen deposition

    No full text
    Protists, in particular bacterivores, are essential players in the rhizosphere; thus, how their interactions with bacteria and fungi affect plant productivity and soil nutrient cycles warrants more attention. Using next generation sequencing of the 18 S rRNA gene, we investigated the distribution of two major protistan phyla, Cercozoa and Endomyxa, across four seasons, and four soil compartments rhizosphere, root, soil and litter. The sampling was replicated in two forests in Norway and the Czech Republic, in order to test our results across biogeographic scales. Compartment had a major influence in shaping protistan communities, over and above spatial distance and seasonal variation. Protistan diversity was highest in the bulk soil while lowest in the roots, suggesting that the plants select for restricted assemblages of protists. Accordingly, only the root compartment harboured a subset of the bulk soil protistan diversity. In addition, protistan communities showed markedly different distributions according to their feeding modes, with opposite patterns for bacterivores versus omnivores and eukaryvores. The small bacterivorous flagellates (mostly Glissomonadida) were more abundant in roots, while the larger amoeboid eukaryvores (e.g. some of the Cryomonadida and vampyrellids) dominated in soil and in the rhizosphere, and the omnivores (e.g. Euglyphida and part of the Cercomonadida), also large and mostly amoeboid, were more abundant in litter. The current view of the soil microbiome is mostly focused on bacteria and fungi: this detailed study on the community distribution of protists according to their feeding modes reveals the essential role they play in each of the soil compartments, an essential precondition for a detailed understanding of the soil food web and nutrient cycling in forest
    • …
    corecore