105 research outputs found

    Registering New Drugs for Low-Income Countries: The African Challenge

    Get PDF
    Mary Moran and colleagues discuss the best strategies for African regulators to be supported in their efforts to evaluate and approve drugs for their own populations

    The drug and vaccine landscape for neglected diseases (2000–11): a systematic assessment

    Get PDF
    Background In 1975–99, only 1·1% of new therapeutic products had been developed for neglected diseases. Since then, several public and private initiatives have attempted to mitigate this imbalance. We analysed the research and development pipeline of drugs and vaccines for neglected diseases from 2000 to 2011. Methods We searched databases of drug regulatory authorities, WHO, and clinical trial registries for entries made between Jan 1, 2000, and Dec 31, 2011. We defi ned neglected diseases as malaria, tuberculosis, diarrhoeal diseases, neglected tropical diseases (NTDs; WHO defi nition), and other diseases of poverty according to common defi nitions. Findings Of the 850 new therapeutic products registered in 2000–11, 37 (4%) were indicated for neglected diseases, comprising 25 products with a new indication or formulation and eight vaccines or biological products. Only four new chemical entities were approved for neglected diseases (three for malaria, one for diarrhoeal disease), accounting for 1% of the 336 new chemical entities approved during the study period. Of 148 445 clinical trials registered in Dec 31, 2011, only 2016 (1%) were for neglected diseases. Interpretation Our fi ndings show a persistent insuffi ciency in drug and vaccine development for neglected diseases. Nevertheless, these and other data show a slight improvement during the past 12 years in new therapeutics development and registration. However, for many neglected diseases, new therapeutic products urgently need to be developed and delivered to improve control and potentially achieve elimination

    Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    Get PDF
    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations

    Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses

    Get PDF
    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents

    The chagas disease study landscape: A systematic review of clinical and observational antiparasitic treatment studies to assess the potential for establishing an individual participant-level data platform

    Get PDF
    Background: Chagas disease (CD), caused by the parasite Trypanosoma cruzi, affects ~6–7 million people worldwide. Significant limitations still exist in our understanding of CD. Harnessing individual participant data (IPD) from studies could support more in-depth analyses to address the many outstanding research questions. This systematic review aims to describe the characteristics and treatment practices of clinical studies in CD and assess the breadth and availability of research data for the potential establishment of a data-sharing platform. Methodology/Principal findings This review includes prospective CD clinical studies published after 1997 with patients receiving a trypanocidal treatment. The following electronic databases and clinical trial registry platforms were searched: Cochrane Library, PubMed, Embase, LILACS, Scielo, Clintrials. gov, and WHO ICTRP. Of the 11,966 unique citations screened, 109 (0.9%) studies (31 observational and 78 interventional) representing 23,116 patients were included. Diagnosis for patient enrolment required 1 positive test result in 5 (4.6%) studies (2 used molecular method, 1 used molecular and serology, 2 used serology and parasitological methods), 2 in 60 (55.0%), 3 in 14 (12.8%) and 4 or more in 4 (3.7%) studies. A description of treatment regimen was available for 19,199 (83.1%) patients, of whom 14,605 (76.1%) received an active treatment and 4,594 (23.9%) were assigned to a placebo/no-treatment. Of the 14,605 patients who received an active treatment, benznidazole was administered in 12,467 (85.4%), nifurtimox in 825 (5.6%), itraconazole in 284 (1.9%), allopurinol in 251(1.7%) and other drugs in 286 (1.9%). Assessment of efficacy varied largely and was based primarily on biological outcome; parasitological efficacy relied on serology in 67/85 (78.8%) studies, molecular methods in 52/85 (61.2%), parasitological in 34/85 (40.0%), microscopy in 3/85 (3.5%) and immunohistochemistry in 1/85 (1.2%). The median time at which parasitological assessment was carried out was 79 days [interquartile range (IQR): 30–180] for the first assessment, 180 days [IQR: 60–500] for second, and 270 days [IQR: 18–545] for the third assessment. Conclusions/Significance This review demonstrates the heterogeneity of clinical practice in CD treatment and in the conduct of clinical studies. The sheer volume of potential IPD identified demonstrates the potential for development of an IPD platform for CD and that such efforts would enable indepth analyses to optimise the limited pharmacopoeia of CD and inform prospective data collection.Fil: Maguire, Brittany J.. University of Oxford; Reino UnidoFil: Dahal, Prabin. University of Oxford; Reino UnidoFil: Rashan, Sumayyah. University of Oxford; Reino UnidoFil: Ngu, Roland. University of Oxford; Reino UnidoFil: Boon, Anca. University of Oxford; Reino UnidoFil: Forsyth, Colin. No especifíca;Fil: Strub Wourgraft, Nathalie. No especifíca;Fil: Chatelain, Eric. No especifíca;Fil: Barreira, Fabiana. No especifíca;Fil: Sosa-Estani, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Guerin, Philippe J.. University of Oxford; Reino Unid

    Implications of asymptomatic infection for the natural history of selected parasitic tropical diseases

    Get PDF
    Progress has been made in the control or elimination of tropical diseases, with a significant reduction of incidence. However, there is a risk of re-emergence if the factors fueling transmission are not dealt with. Although it is essential to understand these underlying factors for each disease, asymptomatic carriers are a common element that may promote resurgence; their impact in terms of proportion in the population and role in transmission needs to be determined. In this paper, we review the current evidence on whether or not to treat asymptomatic carriers given the relevance of their role in the transmission of a specific disease, the efficacy and toxicity of existing drugs, the Public Health interest, and the benefit at an individual level, for example, in Chagas disease, to prevent irreversible organ damage. In the absence of other control tools such as vaccines, there is a need for safer drugs with good risk/benefit profiles in order to change the paradigm so that it addresses the complete infectious process beyond manifest disease to include treatment of non-symptomatic infected persons

    Comparison of artesunate–mefloquine and artemether–lumefantrine fixed-dose combinations for treatment of uncomplicated Plasmodium falciparum malaria in children younger than 5 years in sub-Saharan Africa: a randomised, multicentre, phase 4 trial

    Get PDF
    SummaryBackgroundWHO recommends combinations of an artemisinin derivative plus an antimalarial drug of longer half-life as treatment options for uncomplicated Plasmodium falciparum infection. In Africa, artemether–lumefantrine is the most widely used artemisinin-based combination therapy, whereas artesunate–mefloquine is used infrequently because of a perceived poor tolerance to mefloquine. WHO recommends reconsideration of the use of artesunate–mefloquine in Africa. We compared the efficacy and safety of fixed-dose artesunate–mefloquine with that of artemether–lumefantrine for treatment of children younger than 5 years with uncomplicated P falciparum malaria.MethodsWe did this multicentre, phase 4, open-label, non-inferiority trial in Burkina Faso, Kenya, and Tanzania. Children aged 6–59 months with uncomplicated malaria were randomly assigned (1:1), via a computer-generated randomisation list, to receive 3 days' treatment with either one or two artesunate–mefloquine tablets (25 mg artesunate and 55 mg mefloquine) once a day or one or two artemether–lumefantrine tablets (20 mg artemether and 120 mg lumefantrine) twice a day. Parasitological assessments were done independently by two microscopists who were blinded to treatment allocation. The primary outcome was the PCR-corrected rate of adequate clinical and parasitological response (ACPR) at day 63 in the per-protocol population. Non-inferiority was shown if the lower limit of the 95% CI for the difference between groups was greater than −5%. Early vomiting was monitored and neuropsychiatric status assessed regularly during follow-up. This study is registered with ISRCTN, number ISRCTN17472707, and the Pan African Clinical Trials Registry, number PACTR201202000278282.Findings945 children were enrolled and randomised, 473 to artesunate–mefloquine and 472 to artemether–lumefantrine. The per-protocol population consisted of 407 children in each group. The PCR-corrected ACPR rate at day 63 was 90·9% (370 patients) in the artesunate–mefloquine group and 89·7% (365 patients) in the artemether–lumefantrine group (treatment difference 1·23%, 95% CI −2·84% to 5·29%). At 72 h after the start of treatment, no child had detectable parasitaemia and less than 6% had fever, with a similar number in each group (21 in the artesunate–mefloquine group vs 24 in the artemether–lumefantrine group). The safety profiles of artesunate–mefloquine and artemether–lumefantrine were similar, with low rates of early vomiting (71 [15·3%] of 463 patients in the artesunate–mefloquine group vs 79 [16·8%] of 471 patients in the artemether–lumefantrine group in any of the three dosing days), few neurological adverse events (ten [2·1%] of 468 vs five [1·1%] of 465), and no detectable psychiatric adverse events.InterpretationArtesunate–mefloquine is effective and safe, and an important treatment option, for children younger than 5 years with uncomplicated P falciparum malaria in Africa.FundingAgence Française de Développement, France; Department for International Development, UK; Dutch Ministry of Foreign Affairs, Netherlands; European and Developing Countries Clinical Trials Partnership; Fondation Arpe, Switzerland; Médecins Sans Frontières; Swiss Agency for Development and Cooperation, Switzerland

    New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): a phase 2, double-blind, randomised trial

    Get PDF
    Background: Current treatment for Chagas disease with the only available drugs, benznidazole or nifurtimox, has substantial limitations, including long treatment duration and safety and tolerability concerns. We aimed to evaluate the efficacy and safety of new benznidazole monotherapy regimens and combinations with fosravuconazole, in the treatment of Chagas disease. Methods: We did a double-blind, double-dummy, phase 2, multicentre, randomised trial in three outpatient units in Bolivia. Adults aged 18–50 years with chronic indeterminate Chagas disease, confirmed by serological testing and positive qualitative PCR results, were randomly assigned (1:1:1:1:1:1:1) to one of seven treatment groups using a balanced block randomisation scheme with an interactive response system. Participants were assigned to benznidazole 300 mg daily for 8 weeks, 4 weeks, or 2 weeks, benznidazole 150 mg daily for 4 weeks, benznidazole 150 mg daily for 4 weeks plus fosravuconazole, benznidazole 300 mg once per week for 8 weeks plus fosravuconazole, or placebo, with a 12-month follow-up period. The primary endpoints were sustained parasitological clearance at 6 months, defined as persistent negative qualitative PCR results from end of treatment, and incidence and severity of treatment-emergent adverse events, serious adverse events, and adverse events leading to treatment discontinuation. Primary efficacy analysis was based on the intention-to-treat and per-protocol populations and secondary efficacy analyses on the per-protocol population. Safety analyses were based on the as-treated population. Recruitment is now closed. This trial is registered with ClinicalTrials.gov, NCT03378661. Findings: Between Nov 30, 2016, and July 27, 2017, we screened 518 patients, and 210 were enrolled and randomised. 30 patients (14%) were assigned to each treatment group. All 210 randomised patients were included in the intention-to-treat population, and 190 (90%) were included in the per-protocol population. In the intention-to-treat analysis, only one (3%) of 30 patients in the placebo group had sustained parasitological clearance at 6 months of follow-up. Sustained parasitological clearance at 6 months was observed in 25 (89%) of 28 patients receiving benznidazole 300 mg daily for 8 weeks (rate difference vs placebo 86% [95% CI 73–99]), 25 (89%) of 28 receiving benznidazole 300 mg daily for 4 weeks (86% [73–99]), 24 (83%) of 29 receiving benznidazole 300 mg daily for 2 weeks (79% [64–95]), 25 (83%) of 30 receiving benznidazole 150 mg daily for 4 weeks (80% [65–95]), 23 (85%) of 28 receiving benznidazole 150 mg daily for 4 weeks plus fosravuconazole (82% [67–97]), and 24 (83%) of 29 receiving benznidazole 300 mg weekly for 8 weeks plus fosravuconazole (79% [64–95]; p<0·0001 for all group comparisons with placebo). Six patients (3%) had ten serious adverse events (leukopenia [n=3], neutropenia [n=2], pyrexia, maculopapular rash, acute cholecystitis, biliary polyp, and breast cancer), eight had 12 severe adverse events (defined as interfering substantially with the patient's usual functions; elevated alanine aminotransferase [n=4], elevated gamma-glutamyltransferase [n=2], elevated aspartate aminotransferase [n=1], neutropenia [n=3], leukopenia [n=1], and breast cancer [n=1]), and 15 (7%) had adverse events that led to treatment discontinuation (most of these were in the groups who received benznidazole 300 mg daily for 8 weeks, benznidazole 300 mg once per week for 8 weeks plus fosravuconazole, and benznidazole 150 mg daily for 4 weeks plus fosravuconazole). No adverse events leading to treatment discontinuation were observed in patients treated with benznidazole 300 mg daily for 2 weeks or placebo. There were no treatment-related deaths. Interpretation: Benznidazole induced effective antiparasitic response, regardless of treatment duration, dose, or combination with fosravuconazole, and was well tolerated in adult patients with chronic Chagas disease. Shorter or reduced regimens of benznidazole could substantially improve treatment tolerability and accessibility, but further studies are needed to confirm these results. Funding: Drugs for Neglected Diseases initiative (DNDi). Translation: For the Spanish translation of the abstract see Supplementary Materials section.Fil: Torrico, Faustino. Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente; Bolivia. Universidad Mayor de San Simón; BoliviaFil: Gascón, Joaquim. Instituto de Salud Global de Barcelona; España. Universidad de Barcelona; EspañaFil: Barreira, Fabiana. DNDi Latin America; BrasilFil: Blum, Bethania. DNDi Latin America; BrasilFil: Almeida, Igor C. University of Texas at El Paso; Estados UnidosFil: Alonso Vega, Cristina. DNDi Latin America; Brasil. Instituto de Salud Global de Barcelona; EspañaFil: Barboza, Tayná. DNDi Latin America; BrasilFil: Bilbe, Graeme. Drugs For Neglected Diseases Initiative; SuizaFil: Correia, Erika. DNDi Latin America; BrasilFil: Garcia, Wilson. Universidad Mayor de San Simón; Bolivia. Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente ; BoliviaFil: Ortiz, Lourdes. Universidad Autónoma Juan Misael Saracho; Bolivia. Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente; BoliviaFil: Parrado, Rudy. Universidad Mayor de San Simón; BoliviaFil: Ramirez Gomez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán". Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben"; ArgentinaFil: Ribeiro, Isabela. Drugs For Neglected Diseases Initiative; SuizaFil: Strub Wourgaft, Nathalie. Drugs For Neglected Diseases Initiative; SuizaFil: Vaillant, Michel. Luxembourg Institute Of Health; LuxemburgoFil: Sosa-Estani, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; Argentina. DNDi Latin America; Brasi

    Antiviral and Anti-Inflammatory Activities of Fluoxetine in a SARS-CoV-2 Infection Mouse Model

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world’s population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis
    • …
    corecore