989 research outputs found
Horizontal flow fields observed in Hinode G-band images. I. Methods
Context: The interaction of plasma motions and magnetic fields is an
important mechanism, which drives solar activity in all its facets. For
example, photospheric flows are responsible for the advection of magnetic flux,
the redistribution of flux during the decay of sunspots, and the built-up of
magnetic shear in flaring active regions. Aims: Systematic studies based on
G-band data from the Japanese Hinode mission provide the means to gather
statistical properties of horizontal flow fields. This facilitates comparative
studies of solar features, e.g., G-band bright points, magnetic knots, pores,
and sunspots at various stages of evolution and in distinct magnetic
environments, thus, enhancing our understanding of the dynamic Sun. Methods: We
adapted Local Correlation Tracking (LCT) to measure horizontal flow fields
based on G-band images obtained with the Solar Optical Telescope on board
Hinode. In total about 200 time-series with a duration between 1-16 h and a
cadence between 15-90 s were analyzed. Selecting both a high-cadence (dt = 15
s) and a long-duration (dT = 16 h) time-series enabled us to optimize and
validate the LCT input parameters, hence, ensuring a robust, reliable, uniform,
and accurate processing of a huge data volume. Results: The LCT algorithm
produces best results for G-band images having a cadence of 60-90 s. If the
cadence is lower, the velocity of slowly moving features will not be reliably
detected. If the cadence is higher, the scene on the Sun will have evolved too
much to bear any resemblance with the earlier situation. Consequently, in both
instances horizontal proper motions are underestimated. The most reliable and
yet detailed flow maps are produced using a Gaussian kernel with a size of 2560
km x 2560 km and a full-width-at-half-maximum (FWHM) of 1200 km (corresponding
to the size of a typical granule) as sampling window.Comment: 12 pages, 8 figures, 4 tables, accepted for publication in Astronomy
and Astrophysic
Simulation of a flux emergence event and comparison with observations by Hinode
We study the observational signature of flux emergence in the photosphere
using synthetic data from a 3D MHD simulation of the emergence of a twisted
flux tube. Several stages in the emergence process are considered. At every
stage we compute synthetic Stokes spectra of the two iron lines Fe I 6301.5
{\AA} and Fe I 6302.5 {\AA} and degrade the data to the spatial and spectral
resolution of Hinode's SOT/SP. Then, following observational practice, we apply
Milne-Eddington-type inversions to the synthetic spectra in order to retrieve
various atmospheric parameters and compare the results with recent Hinode
observations. During the emergence sequence, the spectral lines sample
different parts of the rising flux tube, revealing its twisted structure. The
horizontal component of the magnetic field retrieved from the simulations is
close to the observed values. The flattening of the flux tube in the
photosphere is caused by radiative cooling, which slows down the ascent of the
tube to the upper solar atmosphere. Consistent with the observations, the
rising magnetized plasma produces a blue shift of the spectral lines during a
large part of the emergence sequence.Comment: A&A Letter, 3 figure
Simulation of the Formation of a Solar Active Region
We present a radiative magnetohydrodynamics simulation of the formation of an
Active Region on the solar surface. The simulation models the rise of a buoyant
magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the
solar photosphere. The rise of the magnetic plasma in the convection zone is
accompanied by predominantly horizontal expansion. Such an expansion leads to a
scaling relation between the plasma density and the magnetic field strength
such that . The emergence of magnetic flux into the
photosphere appears as a complex magnetic pattern, which results from the
interaction of the rising magnetic field with the turbulent convective flows.
Small-scale magnetic elements at the surface first appear, followed by their
gradual coalescence into larger magnetic concentrations, which eventually
results in the formation of a pair of opposite polarity spots. Although the
mean flow pattern in the vicinity of the developing spots is directed radially
outward, correlations between the magnetic field and velocity field
fluctuations allow the spots to accumulate flux. Such correlations result from
the Lorentz-force driven, counter-streaming motion of opposite-polarity
fragments. The formation of the simulated Active Region is accompanied by
transient light bridges between umbrae and umbral dots. Together with recent
sunspot modeling, this work highlights the common magnetoconvective origin of
umbral dots, light bridges and penumbral filaments.Comment: Accepted for publication in Ap
Забезпечення якості медичної допомоги в умовах запровадження в Україні обов'язкового медичного страхування (адміністративно-правові принципи та складові елементи)
Аналізуються адміністративно правові принципи та складові елементи забезпечення якості медичної допомоги в умовах запровадження в Україні обов’язкового медичного страхування. Особлива увага приділена питанням контролю якості медичної
допомоги.
Ключові слова: якість надання медичної допомоги, обов’язкове медичне страхування.Анализируются административно правовые принципы и составляющие части
обеспечения качества медицинской помощи в условиях утверждения в Украине обязательного медицинского страхования. Особое внимание уделено вопросам контроля качества оказания медицинской помощи.
Ключевые слова: качество медицинской помощи, обязательное медицинское страхование.Administrative and legal principles and component parts of providing medical care quality in conditions of introducing compulsory medical insurance in Ukraine are analyzed in the
article. Special attention is paid to the control provision of medical care quality.
Key words: medical care quality, compulsory medical insurance
The dynamical disconnection of sunspots from their magnetic roots
After a dynamically active emergence phase, magnetic flux at the solar
surface soon ceases to show strong signs of the subsurface dynamics of its
parent magnetic structure. This indicates that some kind of disconnection of
the emerged flux from its roots in the deep convection zone should take place.
We propose a mechanism for the dynamical disconnection of the surface flux
based upon the buoyant upflow of plasma along the field lines. Such flows arise
in the upper part of a rising flux loop during the final phases of its buoyant
ascent towards the surface. The combination of the pressure buildup by the
upflow and the cooling of the upper layers of an emerged flux tube by radiative
losses at the surface lead to a progressive weakening of the magnetic field in
several Mm depth. When the field strength has become sufficiently low,
convective motions and the fluting instability disrupt the flux tube into thin,
passively advected flux fragments, thus providing a dynamical disconnection of
the emerged part from its roots. We substantiate this scenario by considering
the quasi-static evolution of a sunspot model under the effects of radiative
cooling, convective energy transport, and pressure buildup by a prescribed
inflow at the bottom of the model. For inflow speeds in the range shown by
simulations of thin flux tubes, we find that the disconnection takes place in a
depth between 2 and 6 Mm for disconnection times up to 3 days.Comment: 11 pages, 5 figures, accepted by A&
The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun
The dynamics of horizontal plasma flows during the first hours of the
emergence of active region magnetic flux in the solar photosphere have been
analyzed using SOHO/MDI data. Four active regions emerging near the solar limb
have been considered. It has been found that extended regions of Doppler
velocities with different signs are formed in the first hours of the magnetic
flux emergence in the horizontal velocity field. The flows observed are
directly connected with the emerging magnetic flux; they form at the beginning
of the emergence of active regions and are present for a few hours. The Doppler
velocities of flows observed increase gradually and reach their peak values
4-12 hours after the start of the magnetic flux emergence. The peak values of
the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are
800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed
substantially exceed the separation velocities of the photospheric magnetic
flux outer boundaries. The asymmetry was detected between velocity structures
of leading and following polarities. Doppler velocity structures located in a
region of leading magnetic polarity are more powerful and exist longer than
those in regions of following polarity. The Doppler velocity asymmetry between
the velocity structures of opposite sign reaches its peak values soon after the
emergence begins and then gradually drops within 7-12 hours. The peak values of
asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and
710-940 m/s, respectively. An interpretation of the observable flow of
photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented
at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102,
P.4.12,
http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf
Response to ‘An open letter: In solidarity with all children suffering in wars; to all who hold or share a concern for the wellbeing of children’
Acoustic Events in the Solar Atmosphere from Hinode/SOT NFI observations
We investigate the properties of acoustic events (AEs), defined as spatially
concentrated and short duration energy flux, in the quiet sun using
observations of a 2D field of view (FOV) with high spatial and temporal
resolution provided by the Solar Optical Telescope (SOT) onboard
\textit{Hinode}. Line profiles of Fe \textsc{i} 557.6 nm were recorded by the
Narrow band Filter Imager (NFI) on a FOV during 75 min with a
time step of 28.75 s and 0.08 pixel size. Vertical velocities were computed
at three atmospheric levels (80, 130 and 180 km) using the bisector technique
allowing the determination of energy flux in the range 3-10 mHz using two
complementary methods (Hilbert transform and Fourier power spectra). Horizontal
velocities were computed using local correlation tracking (LCT) of continuum
intensities providing divergences.
The net energy flux is upward. In the range 3-10 mHz, a full FOV space and
time averaged flux of 2700 W m (lower layer 80-130 km) and 2000 W
m (upper layer 130-180 km) is concentrated in less than 1% of the solar
surface in the form of narrow (0.3) AE. Their total duration (including rise
and decay) is of the order of s. Inside each AE, the mean flux is W m (lower layer) and W m (upper). Each
event carries an average energy (flux integrated over space and time) of J (lower layer) to J (upper). More than events
could exist permanently on the Sun, with a birth and decay rate of 3500
s. Most events occur in intergranular lanes, downward velocity regions,
and areas of converging motions.Comment: 18 pages, 10 figure
Automated Detection and Tracking of Solar Magnetic Bright Points
Magnetic Bright Points (MBPs) in the internetwork are among the smallest
objects in the solar photosphere and appear bright against the ambient
environment. An algorithm is presented that can be used for the automated
detection of the MBPs in the spatial and temporal domains. The algorithm works
by mapping the lanes through intensity thresholding. A compass search, combined
with a study of the intensity gradient across the detected objects, allows the
disentanglement of MBPs from bright pixels within the granules. Object growing
is implemented to account for any pixels that might have been removed when
mapping the lanes. The images are stabilized by locating long-lived objects
that may have been missed due to variable light levels and seeing quality.
Tests of the algorithm employing data taken with the Swedish Solar Telescope
(SST), reveal that ~90% of MBPs within a 75"x 75" field of view are detected
Responses of the coastal bacterial community to viral infection of the algae <i>Phaeocystis globosa</i>
The release of organic material upon algal cell lyses has a key role in structuring bacterial communities and affects the cycling of biolimiting elements in the marine environment. Here we show that already before cell lysis the leakage or excretion of organic matter by infected yet intact algal cells shaped North Sea bacterial community composition and enhanced bacterial substrate assimilation. Infected algal cultures of Phaeocystis globosa grown in coastal North Sea water contained gamma-and alphaproteobacterial phylotypes that were distinct from those in the non-infected control cultures 5 h after infection. The gammaproteobacterial population at this time mainly consisted of Alteromonas sp. cells that were attached to the infected but still intact host cells. Nano-scale secondary-ion mass spectrometry (nanoSIMS) showed similar to 20% transfer of organic matter derived from the infected C-13- and N-15-labelled P. globosa cells to Alteromonas sp. cells. Subsequent, viral lysis of P. globosa resulted in the formation of aggregates that were densely colonised by bacteria. Aggregate dissolution was observed after 2 days, which we attribute to bacteriophage-induced lysis of the attached bacteria. Isotope mass spectrometry analysis showed that 40% of the particulate C-13-organic carbon from the infected P. globosa culture was remineralized to dissolved inorganic carbon after 7 days. These findings reveal a novel role of viruses in the leakage or excretion of algal biomass upon infection, which provides an additional ecological niche for specific bacterial populations and potentially redirects carbon availability
- …
