2,036 research outputs found

    ECoG-based short-range recurrent stimulation techniques to stabilize tissue at risk of progressive damage: Theory based on clinical observations

    Get PDF
    We introduce theoretical concepts based on chaos control to stabilize in acute stroke the tissue at risk of progressive damage by preventing adverse effects of waves of mass neuronal depolarization. Moreover, we present clinical electrocorticography (ECoG) recordings of relevant signals suggested for the feedback control. The recordings are performed in combination with novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry in patients with aneurysmal subarachnoid haemorrhage (aSAH). In aSAH patients waves of spreading depolarization (SD) have a high incidence and cause hypoxia in tissue at risk, and, importantly, the haemodynamic response is the inverse of that seen in healthy tissue. In previous clinical studies, clusters of prolonged SDs have been measured in aSAH patients in close proximity to structural brain damage as assessed by neuroimaging, and, in theoretical studies, a mechanism was presented, suggesting how a failure of internal feedback could be a putative mechanism of such SD cluster patterns in acute stroke. 

This failing internal feedback control is now suggested to be replaced by ECoG-based short-range recurrent functional stimulation that initiates the normal hyperperfusion haemodynamic response in a demand-controlled way and stabilizes the tissue at risk during the critical phase of SD passage. The suggested method has three key features: (i) it is short-range, i.e., in the order of the distance of the ECoG electrode strip, (ii) it is demand-controlled, and (iii) it uses no prior knowledge of the target state, in particular, it adapts to conditions in the healthy physiological range. On-demand type stimulation provides minimal invasive feedback as the control force is off when the target state is reached, i.e., the tissue at risk is without SD or it is back to the physiological range (out of risk). These last two features (ii-iii) are shared with classical methods of chaos control, where major progress was made in the last years with respect to extensions for spatio-temporal wave patterns. A detailed bifurcation analysis of the nonlinear model is presented, in particular, the SD cluster forming cortical state is suggested to be caused by a delay-induced saddle-node bifurcation.
&#xa

    Manipulating gene expression for the metabolic engineering of plants

    Get PDF
    Introducing and expressing foreign genes in plants present many technical challenges that are not encountered with microbial systems. This review addresses the variety of issues that must be considered and the variety of options that are available, in terms of choosing transformation systems and designing recombinant transgenes to ensure appropriate expression in plant cells. Tissue specificity and proper developmental regulation, as well as proper subcellular localization of products, must be dealt with for successful metabolic engineering in plants

    Real-Time Non-Invasive Imaging and Detection of Spreading Depolarizations through EEG: An Ultra-Light Explainable Deep Learning Approach

    Full text link
    A core aim of neurocritical care is to prevent secondary brain injury. Spreading depolarizations (SDs) have been identified as an important independent cause of secondary brain injury. SDs are usually detected using invasive electrocorticography recorded at high sampling frequency. Recent pilot studies suggest a possible utility of scalp electrodes generated electroencephalogram (EEG) for non-invasive SD detection. However, noise and attenuation of EEG signals makes this detection task extremely challenging. Previous methods focus on detecting temporal power change of EEG over a fixed high-density map of scalp electrodes, which is not always clinically feasible. Having a specialized spectrogram as an input to the automatic SD detection model, this study is the first to transform SD identification problem from a detection task on a 1-D time-series wave to a task on a sequential 2-D rendered imaging. This study presented a novel ultra-light-weight multi-modal deep-learning network to fuse EEG spectrogram imaging and temporal power vectors to enhance SD identification accuracy over each single electrode, allowing flexible EEG map and paving the way for SD detection on ultra-low-density EEG with variable electrode positioning. Our proposed model has an ultra-fast processing speed (<0.3 sec). Compared to the conventional methods (2 hours), this is a huge advancement towards early SD detection and to facilitate instant brain injury prognosis. Seeing SDs with a new dimension - frequency on spectrograms, we demonstrated that such additional dimension could improve SD detection accuracy, providing preliminary evidence to support the hypothesis that SDs may show implicit features over the frequency profile

    Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions

    Get PDF
    How does infarction in victims of stroke and other types of acute brain injury expand to its definitive size in subsequent days? Spontaneous depolarizations that repeatedly spread across the cerebral cortex, sometimes at remarkably regular intervals, occur in patients with all types of injury. Here, we show experimentally with in vivo real-time imaging that similar, spontaneous depolarizations cycle repeatedly around ischaemic lesions in the cerebral cortex, and enlarge the lesion in step with each cycle. This behaviour results in regular periodicity of depolarization when monitored at a single point in the lesion periphery. We present evidence from clinical monitoring to suggest that depolarizations may cycle in the ischaemic human brain, perhaps explaining progressive growth of infarction. Despite their apparent detrimental role in infarct growth, we argue that cycling of depolarizations around lesions might also initiate upregulation of the neurobiological responses involved in repair and remodelling

    A global framework for action to improve the primary care response to chronic non-communicable diseases: a solution to a neglected problem.

    Get PDF
    BACKGROUND: Although in developing countries the burden of morbidity and mortality due to infectious diseases has often overshadowed that due to chronic non-communicable diseases (NCDs), there is evidence now of a shift of attention to NCDs. DISCUSSION: Decreasing the chronic NCD burden requires a two-pronged approach: implementation of the multisectoral policies aimed at decreasing population-level risks for NCDs, and effective and affordable delivery of primary care interventions for patients with chronic NCDs. The primary care response to common NCDs is often unstructured and inadequate. We therefore propose a programmatic, standardized approach to the delivery of primary care interventions for patients with NCDs, with a focus on hypertension, diabetes mellitus, chronic airflow obstruction, and obesity. The benefits of this approach will extend to patients with related conditions, e.g. those with chronic kidney disease caused by hypertension or diabetes. This framework for a "public health approach" is informed by experience of scaling up interventions for chronic infectious diseases (tuberculosis and HIV). The lessons learned from progress in rolling out these interventions include the importance of gaining political commitment, developing a robust strategy, delivering standardised interventions, and ensuring rigorous monitoring and evaluation of progress towards defined targets. The goal of the framework is to reduce the burden of morbidity, disability and premature mortality related to NCDs through a primary care strategy which has three elements: 1) identify and address modifiable risk factors, 2) screen for common NCDs and 3) and diagnose, treat and follow-up patients with common NCDs using standard protocols. The proposed framework for NCDs borrows the same elements as those developed for tuberculosis control, comprising a goal, strategy and targets for NCD control, a package of interventions for quality care, key operations for national implementation of these interventions (political commitment, case-finding among people attending primary care services, standardised diagnostic and treatment protocols, regular drug supply, and systematic monitoring and evaluation), and indicators to measure progress towards increasing the impact of primary care interventions on chronic NCDs. The framework needs evaluation, then adaptation in different settings. SUMMARY: A framework for a programmatic "public health approach" has the potential to improve on the current unstructured approach to primary care of people with chronic NCDs. Research to establish the cost, value and feasibility of implementing the framework will pave the way for international support to extend the benefit of this approach to the millions of people worldwide with chronic NCDs

    Historical Temperature Variability Affects Coral Response to Heat Stress

    Get PDF
    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Two-dimensional wave patterns of spreading depolarization: retracting, re-entrant, and stationary waves

    Full text link
    We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Minimizing the Dangers of Air Pollution Using Alternative Facts: A Science Museum Case Study

    Full text link
    A science museum exhibition about human health contains an exhibit that minimizes health impacts of air pollution. Relevant details, such as the full range of health risks; fossil fuel combustion; air quality statutes (and the local electrical utility’s violations of these statues), are omitted, while end users of electricity are blamed. The exhibit accomplishes this, not through outright falsification, but through selected “alternative facts” that change the focus and imply misleading alternate explanations. Using two classical rhetorical concepts (the practical syllogism and the enthymeme) allows for the surfacing of missing evidence and unstated directives underlying multimodal rhetoric. By stating multimedia arguments syllogistically, a technique is proposed for revealing hidden political sub-texts from beneath a putatively disinterested presentation of facts. The piece should be of interest to researchers, message designers and policy makers interested in the rhetoric of science, ecology, health and museums
    corecore