79 research outputs found

    Effect of U(VI) aqueous speciation on the binding of uranium by the cell surface of Rhodotorula mucilaginosa, a natural yeast isolate from bentonites

    Get PDF
    This study presents the effect of aqueous uranium speciation (U-hydroxides and U-hydroxo-carbonates) on the interaction of this radionuclide with the cells of the yeast Rhodotorula mucigilanosa BII-R8. This strain was isolated from Spanish bentonites considered as reference materials for the engineered barrier components of the future deep geological repository of radioactive waste. X-ray absorption and infrared spectroscopy showed that the aqueous uranium speciation has no effect on the uranium binding process by this yeast strain. The cells bind mobile uranium species (U-hydroxides and U-hydroxo-carbonates) from solution via a time-dependent process initiated by the adsorption of uranium species to carboxyl groups. This leads to the subsequent involvement of organic phosphate groups forming uranium complexes with a local coordination similar to that of the uranyl mineral phase meta-autunite. Scanning transmission electron microscopy with high angle annular dark field analysis showed uranium accumulations at the cell surface associated with phosphorus containing ligands. Moreover, the effect of uranium mobile species on the cell viability and metabolic activity was examined by means of flow cytometry techniques, revealing that the cell metabolism is more affected by higher concentrations of uranium than the cell viability. The results obtained in this work provide new insights on the interaction of uranium with bentonite natural yeast from genus Rhodotorula under deep geological repository relevant conditions

    Implications of microbial redox catalysis in analogue systems for repository safety cases

    No full text
    A detailed assessment of studies of oxidising redox fronts around fractures at depth in otherwise “reducing” environments suggests that the usual explanation, in terms of past disturbances that have resulted in deep penetration of oxidising water, are incompatible with hydrogeological and/or geochemical observations. An alternative hypothesis, microbial catalysis of kinetically slow or hindered reactions involving oxyanions such as sulphate or carbonate, appears potentially more credible. Although still not always taken into account by the geochemical community, the role of microbial metabolism in low temperature geochemistry is supported by the rapidly expanding database on subsurface microbial populations. These populations are demonstrated to be viable and, therefore, could potentially be active at levels close to or below current detection limits in deep geological systems. Indeed, inspection of information available from several analogue studies or repository site characterisation programmes suggests that such activity may explain some of the geochemical anomalies encountered. This paper examines the current (indirect) evidence for microbial redox catalysis in relevant subsurface rock matrix environments and considers the implications that this would have for the development of site understanding – and in particular the identification of factors that may distinguish between different locations during site selection. Further, it examines the wider implications of more extensive roles of microbes in repository systems on the overall post-closure safety case and the need for further focused analogue studies to develop answers to these open questions
    • …
    corecore