4,449 research outputs found

    Study of dynamics of minor constituents in the thermosphere, addendum

    Get PDF
    Numerical studies of a model of the earth's thermosphere are presented. The distribution of thermospheric helium was investigated. Changes in the global transport of helium under solstice conditions caused by a small increase in the latitudes at which the background gas pressure extremes occur lead to much better agreement of the model predictions with data taken by the mass spectrometers on board the ESRO-4 and OGO-6 satellites. The model was applied to a study of the global distributions of atmospheric gases (N2, O2, and O) at both equinox and solstice with emphasis on the winter enhancement of atomic oxygen in the lower thermosphere. Comparison of the results with measurements taken by the ESRO-4 mass spectrometer indicates that the distribution of atomic oxygen is generally a result of global transport by winds

    Winter and summer simulations with the GLAS climate model

    Get PDF
    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations

    Thermodynamics of Heat Shock Response

    Get PDF
    Production of heat shock proteins are induced when a living cell is exposed to a rise in temperature. The heat shock response of protein DnaK synthesis in E.coli for temperature shifts from temperature T to T plus 7 degrees, respectively to T minus 7 degrees is measured as function of the initial temperature T. We observe a reversed heat shock at low T. The magnitude of the shock increases when one increase the distance to the temperature T023oT_0 \approx 23^o, thereby mimicking the non monotous stability of proteins at low temperature. Further we found that the variation of the heat shock with T quantitatively follows the thermodynamic stability of proteins with temperature. This suggest that stability related to hot as well as cold unfolding of proteins is directly implemented in the biological control of protein folding. We demonstrate that such an implementation is possible in a minimalistic chemical network.Comment: To be published in Physical Review Letter

    Investigation of late Pleistocene and early Holocene palaeoenvironmental change at El Mirón cave (Cantabria, Spain): insights from carbon and nitrogen isotope analysis of red deer

    Get PDF
    Abstract: El Mirón Cavewas occupied by humans for over 40,000 years. Evidence of LateMousterian,Gravettian, Solutrean, Magdalenian, Azilian, Mesolithic, Neolithic, Chalcolithic, Bronze Age and Mediaeval occupations has been found in the cave. Understanding the local environmental conditions during the occupations is crucial for gaining an insight into the lifeways of El Mirón's inhabitants as they relied on the surrounding region and its natural resources for their subsistence. 170 bones of hunted red deer recovered from the cave were sampled for carbon and nitrogen stable isotope analyses with the aim of reconstructing the palaeoenvironment and palaeoclimate during the human occupation. The results show that the surrounding landscape underwent considerable environmental change during the Late Pleistocene and Early to Mid-Holocene. Shifts in d13C values between the Last Glacial Maximum, Heinrich stadial 1, Heinrich event 1, the Late-glacial interstadial and the onset of the Holocene are likely to reflect changes in water availability and temperature. Deer d15N generally increased over time indicating the regeneration of soil biological activity and nitrogen cycling, which was temporarily halted during the Younger Dryas. Comparison of the El Mirón results with those of 300 deer from other regions of Europe shows geographical variations in the timing and magnitude of the variation in d13C and d15N values. This variation tracks local climate (temperature andwater availability) and environmental (vegetation and forest development) change
    corecore