62 research outputs found
An analysis of yield variation under soil conservation practices
Much attention has been paid to the effects of multiple soil conservation and soil health practices on the mean yield of the subsequent crop. Much less research has focused on the variability of crop yields over time or space. Yield stability reported in standard deviation, mean absolute deviation, or coefficient of variation can be an important measure of risk for producers. Risk reduction has economic value, and understanding the effect of tillage and other soil conservation practices on yield risk is relevant to farm financial management and crop insurance risk assessment. We used data from test plots in a corn (Zea mays L.)–soybean (Glycine max L.) rotation, spanning from 2003 to 2011 to assess differences in yield stability over time and space. In this experiment, each plot was randomly assigned to a treatment of no-till with no cover crop (NTNC), no-till with an annual ryegrass (Lolium multiflorum Lam.) cover crop (NTCC), or a control group using conventional tillage with no cover crop (CTNC). The statistical analysis made three relevant comparisons: (1) NTCC versus NTNC, (2) NTNC versus CTNC, and (3) NTCC versus CTNC. The analysis also included separating temporal and spatial variation using a time-first approach from the literature, followed by testing for differences between groups. We employed a standard deviation ratio test, Levene’s test, and coefficient of variation t-test. Additionally, analysis of temporal volatility was conducted using ordinary least squares regression and associated t-tests in a method similar to a stock beta, a technique commonly accepted in finance to measure the volatility of an investment. We propose this as a new method in analyzing the temporal volatility in crop yields. We found that no-till reduced average temporal yield variation in corn, and that cover crops reduced average spatial variation in corn. These results were robust over multiple statistical tests. Using the beta coefficient methodology proposed in this paper, we found in both corn and soybeans that NTNC and NTCC had lower temporal yield volatility relative to a benchmark yield from the CTNC group. However, the beta coefficients were, in most cases, not statistically significant. The results of this study suggest that both no-till and cover crops may help reduce yield risk for Midwestern farmers while reducing soil and nutrient loss
COVID\u27s Positive Implications on Business-to-Business Salesperson Communication and Customer Interaction
This article aims to investigate the impact of the COVID-19 pandemic on industrial salesperson communication with buyers, specifically focusing on the positive outcomes. The authors use a qualitative data collection approach based on grounded theory. Thirteen executives, primarily from the transportation industry, were interviewed. Based on the executive interviews, this study develops the pandemic-induced customer interaction model for the industrial market, drawing from the Technology Acceptance Model (TAM) and innovation diffusion theory. This study is the first to examine the positive impacts of the COVID-19 pandemic on business-to-business sales organization communication. This study contributes to the literature through the creation of the pandemic-induced customer interaction model
First trimester screening for pre-eclampsia and targeted aspirin prophylaxis: a cost-effectiveness cohort study
Objective:
Investigate cost-effectiveness of first trimester pre-eclampsia screening using the Fetal Medicine Foundation (FMF) algorithm and targeted aspirin prophylaxis in comparison with standard care. //
Design:
Retrospective observational study. //
Setting:
London tertiary hospital. //
Population:
5957 pregnancies screened for pre-eclampsia using the National Institute for Health and Care Excellence (NICE) method. //
Methods:
Differences in pregnancy outcomes between those who developed pre-eclampsia, term pre-eclampsia and preterm pre-eclampsia were compared by the Kruskal–Wallis and Chi-square tests. The FMF algorithm was applied retrospectively to the cohort. A decision analytic model was used to estimate costs and outcomes for pregnancies screened using NICE and those screened using the FMF algorithm. The decision point probabilities were calculated using the included cohort. //
Main outcome measures:
Incremental healthcare costs and QALY gained per pregnancy screened. //
Results:
Of 5957 pregnancies, 12.8% and 15.9% were screen-positive for development of pre-eclampsia using the NICE and FMF methods, respectively. Of those who were screen-positive by NICE recommendations, aspirin was not prescribed in 25%. Across the three groups, namely, pregnancies without pre-eclampsia, term pre-eclampsia and preterm pre-eclampsia there was a statistically significant trend in rates of emergency caesarean (respectively 21%, 43% and 71.4%; P < 0.001), admission to neonatal intensive care unit (NICU) (5.9%, 9.4%, 41%; P < 0.001) and length of stay in NICU. The FMF algorithm was associated with seven fewer cases of preterm pre-eclampsia, cost saving of £9.06 and QALY gain of 0.00006/pregnancy screened. //
Conclusions:
Using a conservative approach, application of the FMF algorithm achieved clinical benefit and an economic cost saving
Evaluation of Soil Health Indicators in Different Land Uses *
Abstract: Soil health plays an important role in environmental sustainability and food security, but measuring soil health is still uncertain. An evaluation of soil health indicators was conducted using soils from five land uses: forest land, grassland, farmland in corn, farmland in soybean and urban construction land. With the exception of the construction site all of the soils were taken from Agronomy Research Center, Purdue University, West Lafayette, Indiana, USA. The following indicators of soil health were selected and analyzed in the laboratory: bulk density, field moisture content, pH, total carbon and nitrogen, carbon and nitrogen mineralization rates and soil enzyme activities (fluorescein diacetate, ß-glucosidase, arylamidase, acid phosphatase, and arylsulfatase). The experimental data showed that the selected indicators of soil health are sensitive, and all were more favorable in the forest and grassland than in soybean and corn cropland. The least favorable values were in the soil from the construction site. It is clear that land use can influence soil health and these indicators are sensitive to cropping practices
Influence of Corn Stover Harvest on Soil Quality Assessments at Multiple Locations Across the U.S.
Corn (Zea mays L.) stover has been identified as a biofuel feedstock due to its abundance and a perception that the residues are unused trash material. However, corn stover and other plant residues play a role in maintaining soil quality (health) and enhancing productivity, thus use of this abundant material as feedstock must be balanced with the need to protect the vital soil resource. Plant residues provide physical protection against erosion by wind and water, contribute to soil structure, nutrient cycling, and help sustain the soil microbiota. Replicated plots were established on productive soils at several locations (IA, IN, MN, NE, PA, SD, and SC) and a multi-year study was carried out to determine the amount of corn stover that can be removed while maintaining the current level of soil quality for each soil. These sites represented a range of soil types and climatic conditions, and have been ongoing for and least five years with some much longer studies. All sites had at least three levels of stover harvest: grain only (control), maximum removal (90-100%) and a mid-range removal rate (~50%). Data from 4 sites are presented (IA, IN, MN, and NE). The Soil Management Assessment Framework (SMAF) was used to score and assess changes in selected soil quality indicators. Data shows that removal at the highest rates resulted in some loss in soil quality with respect to soil organic carbon and bulk density. These sites were converted to no-till when the experiments were initiated, thus SOC accrual because of the shift in tillage management appeared to balance any losses due to feedstock harvest
Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation
Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i) increase nutrient availability for production of high yielding, high quality crops; (ii) protect crops from pests, pathogens, weeds; and (iii) manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation
Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume
The volume of the lateral ventricles (LV) increases with age and their abnormal enlargement is a key feature of several neurological and psychiatric diseases. Although lateral ventricular volume is heritable, a comprehensive investigation of its genetic determinants is lacking. In this meta-analysis of genome-wide association studies of 23,533 healthy middle-aged to elderly individuals from 26 population-based cohorts, we identify 7 genetic loci associated with LV volume. These loci map to chromosomes 3q28, 7p22.3, 10p12.31, 11q23.1, 12q23.3, 16q24.2, and 22q13.1 and implicate pathways related to tau pathology, S1P signaling, and cytoskeleton organization. We also report a significant genetic overlap between the thalamus and LV volumes (ρgenetic = -0.59, p-value = 3.14 × 10-6), suggesting that these brain structures may share a common biology. These genetic associations of LV volume provide insights into brain morphology
The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation
Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe
The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation
WEAVE, the new wide-field, massively multiplexed spectroscopic survey
facility for the William Herschel Telescope, will see first light in late 2022.
WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a
nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini'
integral field units (IFUs), and a single large IFU. These fibre systems feed a
dual-beam spectrograph covering the wavelength range 366959\,nm at
, or two shorter ranges at . After summarising the
design and implementation of WEAVE and its data systems, we present the
organisation, science drivers and design of a five- to seven-year programme of
eight individual surveys to: (i) study our Galaxy's origins by completing
Gaia's phase-space information, providing metallicities to its limiting
magnitude for 3 million stars and detailed abundances for
million brighter field and open-cluster stars; (ii) survey million
Galactic-plane OBA stars, young stellar objects and nearby gas to understand
the evolution of young stars and their environments; (iii) perform an extensive
spectral survey of white dwarfs; (iv) survey
neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and
kinematics of stellar populations and ionised gas in cluster galaxies;
(vi) survey stellar populations and kinematics in field galaxies
at ; (vii) study the cosmic evolution of accretion
and star formation using million spectra of LOFAR-selected radio sources;
(viii) trace structures using intergalactic/circumgalactic gas at .
Finally, we describe the WEAVE Operational Rehearsals using the WEAVE
Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA
Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection
Background:
Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene.
Objectives:
This study sought to test the association between the rs9349379 genotype and SCAD.
Methods:
Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD.
Results:
The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence.
Conclusions:
The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD
- …