1,490 research outputs found

    Conditioning bounds for traveltime tomography in layered media

    Get PDF
    This paper revisits the problem of recovering a smooth, isotropic, layered wave speed profile from surface traveltime information. While it is classic knowledge that the diving (refracted) rays classically determine the wave speed in a weakly well-posed fashion via the Abel transform, we show in this paper that traveltimes of reflected rays do not contain enough information to recover the medium in a well-posed manner, regardless of the discretization. The counterpart of the Abel transform in the case of reflected rays is a Fredholm kernel of the first kind which is shown to have singular values that decay at least root-exponentially. Kinematically equivalent media are characterized in terms of a sequence of matching moments. This severe conditioning issue comes on top of the well-known rearrangement ambiguity due to low velocity zones. Numerical experiments in an ideal scenario show that a waveform-based model inversion code fits data accurately while converging to the wrong wave speed profile

    Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah

    Get PDF
    Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ∼1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage sit

    Data on 824 fireballs observed by the digital cameras of the European Fireball Network in 2017-2018. I. Description of the network, data reduction procedures, and the catalog

    Full text link
    A catalog of 824 fireballs (bright meteors), observed by a dedicated network of all-sky digital photographic cameras in central Europe in the years 2017-2018 is presented. The status of the European Fireball Network, established in 1963, is described. The cameras collect digital images of meteors brighter than an absolute magnitude of about -2 and radiometric light curves with a high temporal resolution of those brighter than a magnitude ~ -4. All meteoroids larger than 5 grams, corresponding to sizes of about 2 cm, are detected regardless of their entry velocity. High-velocity meteoroids are detected down to masses of about 0.1 gram. The largest observed meteoroid in the reported period 2017-2018 had a mass of about 100 kg and a size of about 40 cm. The methods of data analysis are explained and all catalog entries are described in detail. The provided data include the fireball date and time, atmospheric trajectory and velocity, the radiant in various coordinate systems, heliocentric orbital elements, maximum brightness, radiated energy, initial and terminal masses, maximum encountered dynamic pressure, physical classification, and possible shower membership. Basic information on the fireball spectrum is available for some bright fireballs (apparent magnitude < -7). A simple statistical evaluation of the whole sample is provided. The scientific analysis is presented in an accompanying paper.Comment: accepted in Astronomy and Astrophysic

    Bodies, technologies and action possibilities: when is an affordance?

    Get PDF
    Borrowed from ecological psychology, the concept of affordances is often said to offer the social study of technology a means of re-framing the question of what is, and what is not, ‘social’ about technological artefacts. The concept, many argue, enables us to chart a safe course between the perils of technological determinism and social constructivism. This article questions the sociological adequacy of the concept as conventionally deployed. Drawing on ethnographic work on the ways technological artefacts engage, and are engaged by, disabled bodies, we propose that the ‘affordances’ of technological objects are not reducible to their material constitution but are inextricably bound up with specific, historically situated modes of engagement and ways of life

    lncRNA requirements for mouse acute myeloid leukemia and normal differentiation

    Get PDF
    A substantial fraction of the genome is transcribed in a cell type-specific manner, producing long non-coding RNAs (lncRNAs), rather than protein-coding transcripts. Here we systematically characterize transcriptional dynamics during hematopoiesis and in hematological malignancies. Our analysis of annotated and de novo assembled lncRNAs showed many are regulated during differentiation and mis-regulated in disease. We assessed lncRNA function via an in vivo RNAi screen in a model of acute myeloid leukemia. This identified several lncRNAs essential for leukemia maintenance, and found that a number act by promoting leukemia stem cell signatures. Leukemia blasts show a myeloid differentiation phenotype when these lncRNAs were depleted, and our data indicates that this effect is mediated via effects on the c-MYC oncogene. Bone marrow reconstitutions showed that a lncRNA expressed across all progenitors was required for the myeloid lineage, whereas the other leukemia-induced lncRNAs were dispensable in the normal setting

    Calcium/calmodulin-dependent protein kinase kinase 2 regulates hepatic fuel metabolism

    Get PDF
    Objective The liver is the primary internal metabolic organ that coordinates whole body energy homeostasis in response to feeding and fasting. Genetic ablation or pharmacological inhibition of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) has been shown to significantly improve hepatic health and peripheral insulin sensitivity upon overnutrition with high fat diet. However, the precise molecular underpinnings that explain this metabolic protection have remained largely undefined. Methods To characterize the role of CaMKK2 in hepatic metabolism, we developed and challenged liver-specific CaMKK2 knockout (CaMKK2LKO) mice with high fat diet and performed glucose and insulin tolerance tests to evaluate peripheral insulin sensitivity. We used a combination of RNA-Sequencing, glucose and fatty acid istotopic tracer studies, a newly developed Seahorse assay for measuring the oxidative capacity of purified peroxisomes, and a degenerate peptide libarary to identify putative CaMKK2 substrates that mechanistically explain the protective effects of hepatic CaMKK2 ablation. Results Consistent with previous findings, we show that hepatic CaMKK2 ablation significantly improves indices of peripheral insulin sensitivity. Mechanistically, we found that CaMKK2 phosphorylates and regulates GAPDH to promote glucose metabolism and PEX3 to blunt peroxisomal fatty acid catabolism in the liver. Conclusion CaMKK2 is a central metabolic fuel sensor in the liver that significantly contributes to whole body systems metabolism

    Aerodynamic investigations of ventilated brake discs.

    Get PDF
    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometries, rotated in free air, were measured using a five-hole pressure probe and a hot-wire anemometry system. The principal measurements were taken using two-component hot-wire techniques and were used to determine mean and unsteady flow characteristics at the exit of the brake rotors. Using phase-locked data processing, it was possible to reveal the spatial and temporal flow variation within individual rotor passages. The effects of disc geometry and rotational speed on the mean flow, passage turbulence intensity, and mass flow were determined. The rotor exit jet and wake flow were clearly observed as characterized by the passage geometry as well as definite regions of high and low turbulence. The aerodynamic flow characteristics were found to be reasonably independent of rotational speed but highly dependent upon rotor geometry
    corecore