162 research outputs found

    Testing of crop Models for Accurate Predictions of Evapotranspiration and crop Water Use

    Get PDF
    All crop models, whether site-specific or global-gridded and regardless of crop, simulate daily crop transpiration and soil evaporation during the crop life cycle, resulting in seasonal crop water use. Modelers use several methods for predicting daily potential evapotranspiration (ET), including FAO-56, Penman-Monteith, Priestley-Taylor, Hargreaves, full energy balance, and transpiration water efficiency. They use extinction equations to partition energy to soil evaporation or transpiration, depending on leaf area index. Most models simulate soil water balance and soil-root water supply for transpiration, and limit transpiration if water uptake is insufficient, and thereafter reduce dry matter production. Comparisons among multiple crop and global gridded models in the Agricultural Model Intercomparison and Improvement Project (AgMIP) show surprisingly large differences in simulated ET and crop water use for the same climatic conditions. Model intercomparisons alone are not enough to know which approaches are correct. There is an urgent need to test these models against field-observed data on ET and crop water use. It is important to test various ET modules/equations in a model platform where other aspects such as soil water balance and rooting are held constant, to avoid compensation caused by other parts of models. The CSM-CROPGRO model in DSSAT already has ET equations for Priestley-Taylor, Penman-FAO-24, Penman-Monteith-FAO-56, and an hourly energy balance approach. In this work, we added transpiration-efficiency modules to DSSAT and AgMaize models and tested the various ET equations against available data on ET, soil water balance, and season-long crop water use of soybean, fababean, maize, and other crops where runoff and deep percolation were known or zero. The different ET modules created considerable differences in predicted ET, growth, and yield

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age

    2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries - a case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Screw fixation of pelvic ring fractures is a common, but demanding procedure and navigation techniques were introduced to increase the precision of screw placement. The purpose of this case series was the evaluation of screw misplacement rate and functional outcome of percutaneous screw fixation of pelvic ring disruptions using a 2D navigation system.</p> <p>Methods</p> <p>Between August 2004 and December 2007, 44 of 442 patients with pelvic injuries were included for closed reduction and percutaneous screw fixation of disrupted pelvic ring lesions using an optoelectronic 2D-fluoroscopic based navigation system. Operating and fluoroscopy time were measured, as well as peri- and postoperative complications documented. Screw position was assessed by postoperative CT scans. Quality of live was evaluated by SF 36-questionnaire in 40 of 44 patients at mean follow up 15.5 ± 1.2 month.</p> <p>Results</p> <p>56 iliosacral- and 29 ramus pubic-screws were inserted (mean operation time per screw 62 ± 4 minutes, mean fluoroscopy time per screw 123 ± 12 seconds). In post-operative CT-scans the screw position was assessed and graded as follows: I. secure positioning, completely in the cancellous bone (80%); II. secure positioning, but contacting cortical bone structures (14%); III. malplaced positioning, penetrating the cortical bone (6%). The malplacements predominantly occurred in bilateral overlapping screw fixation. No wound infection or iatrogenic neurovascular damage were observed. Four re-operations were performed, two of them due to implant-misplacement and two of them due to implant-failure.</p> <p>Conclusion</p> <p>2D-fluoroscopic navigation is a safe tool providing high accuracy of percutaneous screw placement for pelvic ring fractures, but in cases of a bilateral iliosacral screw fixation an increased risk for screw misplacement was observed. If additional ramus pubic screw fixations are performed, the retrograde inserted screws have to pass the iliopubic eminence to prevent an axial screw loosening.</p

    The influence of foot geometry on the calcaneal osteotomy angle based on two-dimensional static force analyses

    Get PDF
    Background: Malalignment of the hindfoot can be corrected with a calcaneal osteotomy (CO). A well-selected osteotomy angle in the sagittal plane will reduce the shear force in the osteotomy plane while walking. The purpose was to determine the presence of a relationship between the foot geometry and loading of the calcaneus, which influences the choice of the preferred CO angle. Methods A static free body force analysis was made of the posterior calcaneal fragment in the second half of the stance phase to determine the main loads: the plantar apeunorosis (PA) and Achilles tendon (AT). The third load is on the osteotomy surface which should be oriented such that the shear component of the force is zero. The force direction of the PA and AT was measured on 58 MRIs of the foot, and the force ratio between both structures was taken from the literature. In addition the PA-to-AT force ratio was estimated for different foot geometries to identify the relationship. Results: Based on the wish to minimize the shear force during walking, a mean CO angle was determined to be 33º (SD8) relative to the foot sole. In pes planus foot geometry, the angle should be higher than the mean. In pes cavus foot geometry, the angle should be smaller. Conclusion: Foot geometry, in particular the relative foot heights is a determinant for the individual angle in performing the sliding calcaneal osteotomy. It is recommended to take into account the foot geometry (arch) when deciding on the CO angle for hindfoot correction.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    AgMIP-Wheat multi-model simulations on climate change impact and adaptation for global wheat, SDATA-20-01059

    Get PDF
    The climate change impact and adaptation simulations from the Agricultural Model Intercomparison and Improvement Project (AgMIP) for wheat provide a unique dataset of multi-model ensemble simulations for 60 representative global locations covering all global wheat mega environments. The multi-model ensemble reported here has been thoroughly benchmarked against a large number of experimental data, including different locations, growing season temperatures, atmospheric CO2 concentration, heat stress scenarios, and their interactions. In this paper, we describe the main characteristics of this global simulation dataset. Detailed cultivar, crop management, and soil datasets were compiled for all locations to drive 32 wheat growth models. The dataset consists of 30-year simulated data including 25 output variables for nine climate scenarios, including Baseline (1980-2010) with 360 or 550 ppm CO2, Baseline +2oC or +4oC with 360 or 550 ppm CO2, a mid-century climate change scenario (RCP8.5, 571 ppm CO2), and 1.5°C (423 ppm CO2) and 2.0oC (487 ppm CO2) warming above the pre-industrial period (HAPPI). This global simulation dataset can be used as a benchmark from a well-tested multi-model ensemble in future analyses of global wheat. Also, resource use efficiency (e.g., for radiation, water, and nitrogen use) and uncertainty analyses under different climate scenarios can be explored at different scales. The DOI for the dataset is 10.5281/zenodo.4027033 (AgMIP-Wheat, 2020), and all the data are available on the data repository of Zenodo (doi: 10.5281/zenodo.4027033).Two scientific publications have been published based on some of these data here

    Increases in condomless sex in the Swiss HIV Cohort Study.

    Get PDF
    Condomless sex is a key driver of sexually transmitted diseases. In this study, we assess the long-term changes (2000-2013) of the occurrence of condomless sex among human immunodeficiency virus (HIV)-infected individuals enrolled in the Swiss HIV Cohort study. The frequencies with which HIV-infected individuals reported condomless sex were either stable or only weakly increasing for 2000-2008. For 2008-2013, these rates increased significantly for stable relationships among heterosexuals and men who have sex with men (MSM) and for occasional relationships among MSM. Our results highlight the increasing public health challenge posed by condomless sex and show that condomless sex has been increasing even in the most recent years

    Soil water improvements with the long-term use of a winter rye cover crop

    Get PDF
    AbstractThe Midwestern United States, a region that produces one-third of maize and one-quarter of soybean grain globally, is projected to experience increasing rainfall variability. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage and reduce the risks of flooding as well as drought-induced crop water stress. While some research indicates that a winter cover crop in maize-soybean rotations increases soil water availability, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil water measurements from 2008 to 2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of the wettest on record (2008, 2010, 2014) as well as drier years in the bottom third (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage at the 0–30cm depth from 2012 to 2014 when compared to the no cover crop treatment and in most years greater soil water content on individual days analyzed during the cash crop growing season. We further found that the cover crop significantly increased the field capacity water content by 10–11% and plant available water by 21–22%. Finally, in 2013 and 2014, we measured maize and soybean biomass every 2–3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the seven years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth in maize-soybean crop rotations in the Midwestern United States

    A high-yielding traits experiment for modeling potential production of wheat: field experiments and AgMIP-Wheat multi-model simulations

    Get PDF
    Grain production must increase by 60% in the next four decades to keep up with the expected population growth and food demand. A significant part of this increase must come from the improvement of staple crop grain yield potential. Crop growth simulation models combined with field experiments and crop physiology are powerful tools to quantify the impact of traits and trait combinations on grain yield potential which helps to guide breeding towards the most effective traits and trait combinations for future wheat crosses. The dataset reported here was created to analyze the value of physiological traits identified by the International Wheat Yield Partnership (IWYP) to improve wheat potential in high-yielding environments. This dataset consists of 11 growing seasons at three high-yielding locations in Buenos Aires (Argentina), Ciudad Obregon (Mexico), and Valdivia (Chile) with the spring wheat cultivar Bacanora and a high-yielding genotype selected from a doubled haploid (DH) population developed from the cross between the Bacanora and Weebil cultivars from the International Maize and Wheat Improvement Center (CIMMYT). This dataset was used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Phase 4 to evaluate crop model performance when simulating high-yielding physiological traits and to determine the potential production of wheat using an ensemble of 29 wheat crop models. The field trials were managed for non-stress conditions with full irrigation, fertilizer application, and without biotic stress. Data include local daily weather, soil characteristics and initial soil conditions, cultivar information, and crop measurements (anthesis and maturity dates, total above-ground biomass, final grain yield, yield components, and photosynthetically active radiation interception). Simulations include both daily in-season and end-of-season results for 25 crop variables simulated by 29 wheat crop models

    Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    Get PDF
    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use1. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments1, 2 and global crop models3 to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[0;47]%–27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4–17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities

    Evidence for increasing global wheat yield potential

    Get PDF
    Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 +/- 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges
    corecore