99 research outputs found

    Mixtures of nonparametric autoregressions

    Get PDF
    We consider data generating mechanisms which can be represented as mixtures of finitely many regression or autoregression models.We propose nonparametric estimators for the functions characterising the various mixture components based on a local quasi maximum likelihood approach and prove their consistency. We present an EM algorithm for calculating the estimates numerically which is mainly based on iteratively applying common local smoothers and discuss its convergence properties. © American Statistical Association and Taylor & Francis 2011.postprin

    TGF-β Induces Surface LAP Expression on Murine CD4 T Cells Independent of Foxp3 Induction

    Get PDF
    It has been reported that human FOXP3(+) CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3(+) Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs.We generated anti-mouse LAP mAbs by immunizing TGF-β(-/-) animals with a mouse Tgfb1-transduced P3U1 cell line. Using these antibodies, we demonstrated that murine Foxp3(+) CD4 Tregs express LAP on their surface. In addition, retroviral transduction of Foxp3 into mouse CD4(+)CD25(-) T cells induced surface LAP expression. We then examined surface LAP expression after treating CD4(+)CD25(-) T cells with TGF-β and found that TGF-β induced surface LAP not only on T cells that became Foxp3(+) but also on T cells that remained Foxp3(-) after TGF-β treatment. GARP expression correlated with the surface LAP expression, suggesting that surface LAP is GARP-anchored also in murine T cells.Unlike human CD4 T cells, surface LAP expression on mouse CD4 T cells is controlled by Foxp3 and TGF-β. Our newly described anti-mouse LAP mAbs will provide a useful tool for the investigation and functional analysis of T cells that express LAP on their surface

    Nitazoxanide Stimulates Autophagy and Inhibits mTORC1 Signaling and Intracellular Proliferation of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment

    Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors

    Get PDF
    Abstract: It is unclear how genetic aberrations impact the state of nascent tumour cells and their microenvironment. BRCA1 driven triple negative breast cancer (TNBC) has been shown to arise from luminal progenitors yet little is known about how BRCA1 loss-of-function (LOF) and concomitant mutations affect the luminal progenitor cell state. Here we demonstrate how time-resolved single-cell profiling of genetically engineered mouse models before tumour formation can address this challenge. We found that perturbing Brca1/p53 in luminal progenitors induces aberrant alveolar differentiation pre-malignancy accompanied by pro-tumourigenic changes in the immune compartment. Unlike alveolar differentiation during gestation, this process is cell autonomous and characterised by the dysregulation of transcription factors driving alveologenesis. Based on our data we propose a model where Brca1/p53 LOF inadvertently promotes a differentiation program hardwired in luminal progenitors, highlighting the deterministic role of the cell-of-origin and offering a potential explanation for the tissue specificity of BRCA1 tumours

    A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.

    Get PDF
    Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer

    A systematic review of the use of dosage form manipulation to obtain required doses to inform use of manipulation in paediatric practice

    Get PDF
    This study sought to determine whether there is an evidence base for drug manipulation to obtain the required dose, a common feature of paediatric clinical practice. A systematic review of the data sources, PubMed, EMBASE, CINAHL, IPA and the Cochrane database of systematic reviews, was used. Studies that considered the dose accuracy of manipulated medicines of any dosage form, evidence of safety or harm, bioavailability, patient experience, tolerability, contamination and comparison of methods of manipulation were included. Case studies and letters were excluded. Fifty studies were eligible for inclusion, 49 of which involved tablets being cut, split, crushed or dispersed. The remaining one study involved the manipulation of suppositories of one drug. No eligible studies concerning manipulation of oral capsules or liquids, rectal enemas, nebuliser solutions, injections or transdermal patches were identified. Twenty four of the tablet studies considered dose accuracy using weight and/or drug content. In studies that considered weight using adapted pharmacopoeial specifications, the percentage of halved tablets meeting these specifications ranged from 30% to 100%. Eighteen studies investigated bioavailability, pharmacokinetics or clinical outcomes following manipulations which included nine delayed or modified release formulations. In each of these nine studies the entirety of the dosage form was administered. Only one of the 18 studies was identified where drugs were manipulated to obtain a proportion of the dosage form, and that proportion administered. The five studies that considered patient perception found that having to manipulate the tablets did not have a negative impact on adherence. Of the 49 studies only two studies reported investigating children. This review yielded limited evidence to support manipulation of medicines for children. The results cannot be extrapolated between dosage forms, methods of manipulation or between different brands of the same drug

    CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function.

    Get PDF
    CD4+ regulatory T (Treg) cells, dependent upon the transcription factor Foxp3, contribute to tumour immunosuppression but are also required for immune homeostasis. There is interest in developing therapies that selectively target the immunosuppressive function of Treg cells within tumours without disrupting their systemic anti-inflammatory function. High levels of expression of chemokine (C-C motif) receptor 8 (CCR8) discriminate Treg cells within tumours from those found in systemic lymphoid tissues. It has recently been proposed that disruption of CCR8 function using blocking anti-CCR8 antibodies results in reduced accumulation of Treg cells within tumours and disruption of their immunosuppressive function. Here, using Ccr8-/- mice, we show that CCR8 function is not required for Treg cell accumulation or immunosuppression in the context of syngeneic MC38 colorectal adenocarcinoma and B16 melanoma tumours. We observed high levels of CCR8 expression on tumour-infiltrating Treg cells which were abolished in Ccr8-/- mice. High levels of CCR8 marked cells with high levels of suppressive function. However, whereas systemic ablation of Treg cells resulted in strikingly diminished tumour burden, growth of subcutaneously implanted tumours was unaffected by systemic CCR8 loss. Consistently, we observed minimal impact of systemic CCR8 ablation on the frequency, phenotype and function of tumour-infiltrating Treg cells and conventional T (Tconv) function. These findings suggest that CCR8 is not required for Treg cell accumulation and immunosuppressive function within tumours and that depletion of CCR8+ Treg cells rather than blockade of CCR8 function is a more promising avenue for selective immunotherapy

    The Consensus Molecular Subtypes of Colorectal Cancer

    Get PDF
    Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use -- https://www.nature.com/authors/policies/license.html#termsColorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMS) with distinguishing features: CMS1 (MSI Immune, 14%), hypermutated, microsatellite unstable, strong immune activation; CMS2 (Canonical, 37%), epithelial, chromosomally unstable, marked WNT and MYC signaling activation; CMS3 (Metabolic, 13%), epithelial, evident metabolic dysregulation; and CMS4 (Mesenchymal, 23%), prominent transforming growth factor β activation, stromal invasion, and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intra-tumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC - with clear biological interpretability - and the basis for future clinical stratification and subtype-based targeted interventions

    On some problems related to machine-generated noise

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN020534 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore