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We consider data generating mechanisms which can be represented as mixtures of finitely many regression
or autoregression models. We propose nonparametric estimators for the functions characterising the various
mixture components based on a local quasi maximum likelihood approach and prove their consistency. We
present an EM algorithm for calculating the estimates numerically which is mainly based on iteratively
applying common local smoothers and discuss its convergence properties.
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algorithm; kernel estimates; local likelihood
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1. Introduction

We consider regressions and autoregressions which may be represented as a mixture of M different
nonlinear models. We assume all over this paper that the available data (X, Y1), ..., (Xw, Yn)
are part of a strictly stationary time series. This includes the regression case, where (X, Y;),
j=1,..., N, are pairs of i.i.d. observations, as well as the autoregressive situation where
X; =(Y;_1,...,Y;_,) consists of observations from the past of the stationary time series with
current value Y;. For the sake of simplicity, we restrict our considerations to one-dimensional
variables X, ..., Xy € R, i.e. in the autoregressive case, to processes of order 1. We assume that
the data are generated by the following independent switching model:

M
Yo =" Zidme(X,) + 00e, ), (1

k=1
wheretheresidualse; ¢, t =1,..., N, k=1,..., M, arei.i.d. random variables with mean 0 and
variance 1, m(x), ..., my(x) are the unknown regression functions of M regression models, and
ag > 0 is the residual variance. Z, = (Z,, ..., Z;;)" are i.i.d. random variables which assume
as values the unit vectors ey, ..., ey € RM je. exactly one of the Z is 1, and the others are 0.
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2 J. Franke et al.
Furthermore, we assume that Z, is independent of X ;, &; 4, j < t. Let
71,? =pr(Z, =e) =pr(Z;=0forl #k), k=1,..., M,

be the probability that Y, is generated from X, using the kth regression model, where 0 + - - - +
n}?,, = 1. If, e.g. the &, ; are standard normal variables with ® denoting their distribution function,
then the conditional distribution function of Y; given X; = x would be

M

F(ylo) =pr(¥, < yIX, =x) =) 7)® (
k=1

y —mk(x)>_ @)

0o

In particular, we allow for X, = Y,_;. In that case, we get a mixture of M nonparametric
autoregressive processes of order 1:

M

Y, =) Zsdmi(Y, 1) + 008, 4} 3)
k=1

In the special case, where the autoregression functions are all linear, i.e. my (x) = ¢ro + dr1x, k =
1,..., M, wegetamixture autoregressive model as considered by Wong and Li (2000). Conditions
on 7110, R 71,?4, my, ..., my for the existence of a stationary solution of Equation (3) have been
given in a much more general context in Stockis, Tadjuidje-Kamgaing, and Franke (2010). Here,
we only remark that some of the autoregressive dynamics characterised by m; (x) may be explosive
provided that they occur rarely enough, i.e. 7 is small enough.

The assumption of independent state variables Z; is motivated, e.g. by the following situation
which is typical for mixture models: we consider independent data (X;,Y;), j=1,..., N, and
we want to find a regression relation nonparametrically. The sample is not homogeneous, and
the observations come from M different populations, such that, for each of them, we have to

estimate a separate regression function my (x) = E{Y;|X, = x}. However, we do not know which

observation comes from which population. Nevertheless, we want to estimate m (x), ..., my (x)
and, simultaneously, the asymptotic proportions n? e 711?,, of the M subsamples in the total
sample.

In case where the data come from a time series, assuming independence of the state variables is
a considerable simplification, but the purpose of this paper is to present the main idea of combining
nonparametrics, in particular local smoothers, and mixture models in a simple framework. We
also present a real time series data set where the restricted model serves as a good approximation
of the data generating process. In principle, however, nonparametric Markov switching models
where the Z, form a Markov chain with finite state space corresponding to the M different phases
would be more flexible and widely applicable. This will be a topic for consecutive research. Due
to the same reason, we restrict ourselves to autoregressions of order 1 though the basic idea of
estimating functions in a mixture of models can be transferred to, e.g. higher order autoregressions
or ARCH-processes, compare Wong and Li (2001) for the parametric case or Stockis et al. (2010)
for the general case.

In the next section, we present a local quasi maximum likelihood approach to derive simultane-
ous estimates of all the regression functions m, . .., my,. Section 3 discusses an EM algorithm as
an iterative numerical scheme for calculating those estimates which boils down to using common
kernel estimates in the M-step. Section 4 illustrates the feasibility of this estimation procedure by
applying it to some artificial and real data. Finally, in the technical appendix, we have a look at a
more general model and, in that context, prove consistency of the local quasi maximum likelihood
estimates and convergence of a related EM algorithm.
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2. Local quasi maximum likelihood estimates

In this paper, we do not restrict the functions m; to particular parametric classes, but we assume
only a certain degree of smoothness. Our goal is to derive simultaneous estimates for the param-
eters my, ..., Ty—1, o as well as for the regression functions m(x), ..., my(x). Mark that my,
is only used as an abbreviation for 1 — w; — - - - — ), throughout the paper, and it is not a free
parameter. For the homogeneous models, i.e. for M = 1, kernel estimates and, more generally,
local polynomial estimates have been applied successfully to estimating regression and autore-
gression functions nonparametrically (compare Robinson 1983; Hirdle 1990; Hirdle and Vieu
1992; Fan and Gijbels 1996; Fan and Yao 2005). As we consider distributions, we, moreover, rely
on the general local likelihood regression approach of Tibshirani and Hastie (1987), compare also
Fan, Farmen, and Gijbels (1998) and, for a survey, the book of Loader (1999). In particular, our
approach is related to the work of Carroll, Ruppert, and Welsh (1998) who also consider essen-
tially M-estimates of local parameters depending on an exogeneous variable Z which, however,
in their case is continuous and observable.

We combine those ideas of local averaging with the approach of Wong and Li for getting
estimates for parametric mixture models. If the data are generated by only one regression function
(M = 1), a common nonparametric estimate for the function m(x) is the Nadaraya—Watson
kernel estimate

SN Kix — X)) Y,
SN Kn(x — X)

for some suitable bandwidth i. K (1) is a kernel function satisfying

my(x, h) =

“

(K) K(u) >0, K(—u) = K(u), f K (u) du = 1, and the support of K is compact.

These conditions could be relaxed, but again we prefer to keep this exposition as simple as
possible. K, (u) = (1/h)K (u/h) denotes the rescaled kernel. iy (x, h) can be interpreted as
solution of a local weighted least-squares problem

N
iy (x, h) = arg%; Kin(x — X (Y, — w)?

where the weights are specified by the kernel such that observations with X, = x have the largest
influence on the estimate of the function at x. If the residuals ¢, ; are normal random variables,
then, equivalently, 711 (x, ) is also a local maximum likelihood estimate as, with ¢ () denoting
the standard normal density, it maximises the local conditional log-likelihood function

N
1 Y, —u
ZKh<x—X,)log—<o( ’ )
o o

t=1

with respect to i for any o > 0.
For the general case M > 1, we consider the corresponding Gaussian local conditional quasi
log likelihood

N M
T (Y — Wk
LWX,Y) = K —X)1 — 5
@1X.Y) =Y Klx t)ogZUso< - ) 5)
=1 k=1
V= (T, .., Tty M1y -ens UM, o)T € © denotes the partly local parameter where ® C R2K
is the set of admissible parameters satisfying the constraints o > 0,7y > Ofork =1,..., M — 1

andm; +---+my_1 < 1.



151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

4 J. Franke et al.

Mark that, throughout the paper, we do not assume normality of the residuals &, ;. They only
have to satisfy some moment conditions and have a positive density, compare Section A.1. There-
fore, maximising L(¢|X, Y) with respect to ¥ provides only a local quasi maximum Gaussian
likelihood estimate f?N.

As we use a Gaussian quasi likelihood, i.e. essentially a local least squares approach, the
resulting estimates are not robust against outliers. If the distribution of the residuals &, ; may be
heavy-tailed, using general M-smoothers instead would be advisable, compare, e.g. Hirdle and
Gasser (1984) and Hirdle and Tuan (1986). In that case, we have to replace ¢ in Equation (5)
by the density of an appropriate heavy-tailed distribution standardised to mean 0 and variance 1
and sharing some regularity assumptions with the normal density. The theory of the appendix still
holds. However, in general, we do no longer have explicit formulas for the local quasi maximum
likelihood estimates like the Nadaraya—Watson estimates of, e.g. Equation (6). We have to consider
numerical solutions which increases the computational load considerably.

3. The EM algorithm

Observing a mixture of nonparametric regressions or autoregressions like Equation (1), we could
treat it as M independent estimation problems if the Z;; would be observable. By our assumptions,
we would have M different data sets

Yi =mi(X;) +og&y, teTliy={s<N; Zg =1},
k=1,..., M. The Nadaraya—Watson estimates for the functions m; would be

Yier, K = X0 Yo YN Ky(x — X)) YiZy

= 6
Zren Ky (x — X;) Zivzl Kp(x — X)) Zu ©

my(x, h) =

as the Z,; are either 1 or 0. This vector of function estimates (772, (x, h), ..., Ay (x, h))T is the
solution of the weighted least-squares problem:

N M

Minimise  » > (¥, — u)* ZuKy(x — X;)  wrt ... py € R
t=1 k=1

As we do not observe the Z;;, we follow the approach of Wong and Li (2000) instead, and
approximate the hidden variables by their conditional expectations g“ﬁc given Y; which are calcu-
lated pretending (but not assuming) that the residuals &, ; are standard normal variables. Let ¢ ()
denote the standard normal density. If Z,;, = 1, then, conditional on X, = x, the distribution of
Y, is N (my(x), o8). Therefore,

E{Z|Y;, X} = pr{Zy = 11Y;, Xy}

70(1/00)p(Y, — mi(X,)/00)
M w21 o0)p(Y, — mi(X,)/o0)

0
Sk

As we do not know the parameters 7 and o and the regression functions my (x), we apply the
same kind of iterative EM-procedure as in Wong and Li (2001).

(a) E-step: Suppose that estimates 77y, ..., 7y, ¢ and approximations e of the residuals ¥, —
my (X;) are given. Then, the conditional expectations of the hidden variables Z,; given Y; and
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X, are estimated by

= 7 (1/6)p(ew/6)
S a(1/6)len/d)

(b) M-step: Suppose approximations ¢ for the hidden variables Z;; are given. Then, we estimate
the probabilities 7y, ..., my by

N
1

T = — , k=1,..., M. 7

k N;Qk (7)

We estimate the M regression functions by

Zﬁ\le Ky(x — XY
Zﬁ\; Kp(x — X)) ,

my(x, h) = k=1,....M, ®)

and the residual variances by

1 M

62 =D D entw ©)
k=

t=1 1
Where e = Y[ - ”;’lk(X[, h).

The estimates of the parameters and the regression functions are obtained by iterating these
two steps until convergence.

Remark 1 The final values of ¢, k =1, ..., M, may be used for classifying the observations
by the following common rule: Y; is classified as belonging to state k iff {;, = max;—,_m &i.

The EM-algorithm is a computationally simple numerical procedure for maximising the
Gaussian local conditional log likelihood L(#|X, Y) of Equation (5). Under typical conditions,
we prove in the appendix that it converges to a stationary point ¥ of L(¢}|X, Y). In practice,
we may get different limit points corresponding to different local maxima of L(#|X, Y) if we
choose different initial values, but that is not unusual for maximum likelihood-type procedures in
situations with many parameters. Therefore, we recommend to apply the usual device of trying
several starting values and compare the values of the target function L(¥|X, Y) for the various
limits of the numerical procedure.

4. Numerical examples

For fitting model (1) to the following data, we used a straightforward implementation of the
EM algorithm described in Section 3 as a MATLAB 7.0 subroutine. On an up-to-date standard
desktop PC, one step of the iteration took about 0.5 sec for the artificial data set with N =
1000 of Section 4.1, and about 5.4 sec for the heart rate data of Section 4.2 with N = 2812.
Convergence to the shown estimates was achieved rather fast after 50-100 iterations depending
on the starting values. Those results may, however, give a too optimistic view of the numerical
efforts. In another numerical experiment with artificial data, not reported here, we considered two
states with differing standard deviations o1 # 07, and in that case, the EM algorithm considerably
needed more iterations (about 2000) to converge. For sample size 1000, the whole procedure took
about 15 min of computation time.
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4.1. A simulation

To illustrate the feasibility of the estimation procedure combined with the numerical procedure
described above, we first consider some artificial data. We generate N = 1000 observations from
a nonparametric AR(1)-mixture model (1), i.e. X, = ¥,_;, with M = 2 components and standard
normal innovations &, ;. We choose the state probabilities as 7)) = 0.7, 79 = 1 — 70 = 0.3, the

15+ ' 1

'
[T
0.5 'o’,g,t "u“'O

*
-0.5 o " & ¢

-15¢+

-
-
-
-
-
-
-
-

1 1 Is 1 1 1 |y 1 1

0 100 200 300 400 500 600 700 800 900 1000

Figure 1. Simulated data.
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Figure 2. Scatter plot simulated data.
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innovation variance as o = 0.2 and the two autoregressive functions as

2

mi(x) =0.7x +2¢(10x), my(x) = m —

where ¢ denotes the standard normal density. i.e. m; is a bump function and m; is a function of
sigmoid shape. Figures 1 and 2 show the data and the corresponding scatter plot of Y; against Y;_;.

We apply the EM-algorithm with bandwidth & chosen by an opening the window technique,
i.e. by trying several bandwidths and deciding visually for a good compromise which is neither
too smooth nor too rough. Of course, an automatic procedure would be desirable and will be the
topic of future research. The estimation procedure yields for the parameters 7; = 0.6990 and
62 =0.2004.

Figure 3 shows m; and m; (dashed lines) and the respective kernel estimates (solid lines). Apart
from some deviations at the boundaries which may be explained by scarceness of data in that
region and by boundary effects, the quality of the estimates is rather good. Figure 4 shows the
final values of max (¢, ¢») which, except for very few cases, are close to 1. The classification
rule of Remark 1, therefore, mostly leads to a clear-cut decision.

1.5

Figure 3. Estimated trend functions.
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Figure 4. Maximum of the estimated state probabilities: Simulated data.
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4.2. An application to heart rate data

As a second example, we consider a set of data from a person suffering from a severe dysfunction
of the rhythm of the heart. Y; corresponds to the waiting time between two consecutive heart beats
which is derived from the time lags between peaks in an electrocardiogram. The data are available
at the first author’s homepage (www.mathematik.uni-kl.de/ ~franke). Figure 5 shows the data
where the sample size is N = 2813. Looking at the high degree of irregularity in the data, the
assumption of independent state variables controlling the switching between phases seems to be
plausible. Figure 6 shows the corresponding scatter plot. For a healthy person, the latter would
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Figure 5. Heart rate data.
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show more or less an ellipse with positive inclination due to the positive correlation between
adjacent heart beats. The apparent clustering in Figure 6 does not only indicate the pathological
nature of that data set, but also suggests the presence of several different phases.

We have fitted a mixture of M = 3 nonparametric AR(1)-processes to the data resulting in
an estimate 6 = 127.0838 of the standard deviation of the innovations and in kernel estimates
of the autoregressive functions shown in Figure 7. The dashed lines are more or less constant
corresponding to white noise with different means around 600 and 1200. The solid line shows
a sigmoid function with positive inclination. We have used the rule of Remark 1 to classify the
observations.

Figure 8 shows max(¢;1, &2, ¢;3) which almost always are at least 0.5 and frequently con-
siderably larger, i.e. there is a clear decision for one of the three phases in the large majority
of cases.

We also have fitted a mixture model with four phases to the data which obviously did not
lead to any improvement. The two upper function estimates in Figure 7 and the corresponding
classification of observations remained largely unchanged. The third phase represented by the
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Figure 7. Scatter plot and functions estimates: The upper dashed curve represents the first state trend function, the lower
dashed the second state function and the third is represented by the solid curve.
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lower curve in Figure 7 was replaced by two kernel estimates which both were roughly constant
and differed only slightly, i.e. they essentially estimated the same autoregressive function and
represented the same data generating mechanism.

A similar observation has been made for the computer generated data where we have considered
one more state in the estimation procedure than present in the mechanism used for generating
the data.

5. Conclusion

For a first simple example, we have illustrated that the local quasi maximum likelihood approach is
applicable to mixtures of nonparametric regression and autoregression models. The EM algorithm
provides a numerical method for calculating the function estimates which reduces to applying
common local smoothers as part of an iterative scheme. The applications to artificial and real
data look promising, but there are, of course, a lot of possible extensions and open questions to
be addressed in future work. Apart from having a look at mixtures of more general models and
allowing for Markovian instead of independent switching between states, the asymptotics of the
local parameter estimates and automatic methods for choosing the smoothing parameter £ as well
as the number of states M are of prime interest. Also, the suitability of local polynomials and
other local nonparametric function estimates for the mixture framework has to be investigated.
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Appendix

In the following, we consider a generalisation of the mixture model (1), allowing for a dependence of the innovation
variance s2(X,) and the state probabilities JT,? (X;) on the current X,:

M
Yo=Y Ziadm(X0) + s(X0)en i), (A1)

k=1
where &4, t=1,...,N, k=1,..., M, are i.i.d. random variables with mean 0 and variance 1, Z; is conditionally

independent of X, Zs, s <t, &k, s <t, given X;, and
pr(Z, = ex|X; =x) =pr(Zy =0forl #k|X, =x) =n(x), k=1,..., M,

with 70 (x) + - + 79 (x) = 1.

A.l. An auxiliary result on local M estimates

For convenience, we first formulate an auxiliary result which we need for showing consistency of the local quasi maximum
likelihood estimates of 7y (x), nmy (x) and o2 (x) of model (A 1). We study the general local M-estimate 1y which maximises

N
Ry®) = Kn(x = X)p(¥;, 9)

=1
for some function p : R x ® — R, or, equivalently,

N
. Kin(x — Xy)
Ry@) =) Wnip(Ye,9) with Wy, = —m—————.
=1 Zj:l Kp(x — X;)

Under the assumptions, stated below, Ry (¢) will converge to
r(@) = E{p(Y1, %)X = x}.

We assume that

(Al) © is compact.

(A2) p(y, ¥) is continuous in ¥, and E|p (Y, ¥)| < oo.

(A3) r(¥9) is continuous in ¥ and has a unique global maximum at ¥y € ©.
(A4) po(y, V) = p(y, ®) — r(¥) satisfies a uniform Lipschitz condition

lpo(y, 9) = po(y, 9 < LMY — 'l

forall 9,9’ € ©, y € R with some function L > 0 satisfying EL(Y]) < oco.
(A5) For N — oo and i — 0 such that Nh — oo,

N
Z Wyip(Yy,®) — E{p(Y1,?)| X, =x}=r() foralv €@,
p
=1
N
2 WL (Y) — E{L(DIX) = x}.

t=1
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PROPOSITION A.1  Under the conditions (K) on the kernel and (A1), ..., (AS), the general M-estimate 7§N is consistent
for ¥, i.e., for N - oo,h - 0, Nh — oo

1§N =argmin Ry () — vy for N — oo.
e® p

Proof We only sketch the main ideas, as the details are essentially the same as in proving a similar result by Hérdle and
Tsybakov (1988) on M-estimates in a location-scale regression model. First, a standard argument, covering the compact
© by finitely many §-balls, exploiting Lipschitz continuity (A4) and applying (AS), shows uniform convergence of Ry ()
to r(), i.e.

N
sup [Ry (9) — r(@)| = sup Y W, po(¥;, ) —0.
Ve®

€0

Hence, 9y as the minimiser of Ry () converges to the minimiser 9% of r (1) using the identifiability assumption (A3). W

Conditions (A1) and (A3) are a bit restrictive, but typical for proving convergence of M-estimates in case that the
criterion function has multiple local maxima in the limit. Essentially, they require to choose the set ® of admissible
parameters small enough such that it contains only one local (and then global) maximum of r(¢). An identifiability
condition is in particular necessary for the application to mixture models in the following subsection where p(y, ¥) is
the logarithm of a mixture density, compare Equation (A3). This density does not change, if we permute the numbering
of the regimes, i.e. various different parameters lead to the same p(y, ©) and, then, (). Additionally, if we have chosen
M too large such that my = m for some k # j, m; and r; will not be identifiable at all. To get a convergence result, we
have to choose the parameter set ® appropriately to exclude such ambiguities. For a more detailed discussion in a related
context, compare Stockis, Tadjuidje-Kamgaing, and Franke (2008).

Condition (AS5) is nothing else but the consistency of the Nadaraya—Watson kernel estimates

N N
D Wnip(Yi,®) and Y Wy, L(Y;)

=1 =1
for the conditional expectations
r(x,?) = E{p(Y1, M)|X1 =x} and £(x) = E{LYDIX| =x}

for arbitrary, but fixed . There are quite a number of results available guaranteeing this consistency under various sets
of conditions on the functions r(x, ) and £(x), on the rate of the bandwidth # and on the dependence structure of
the time series (X;, Y;). In the case where (X;,Y;), t =1,..., N, are i.i.d., the assertion follows immediately from
Proposition 3.1.1 of Hérdle (1990) under the weak conditions that the second moments of p (Y7, ©) and L (Y1) are finite
and the density of X, is continuous and positive in a neighbourhood of x. For time series, we use the following result
under an o-mixing condition which follows from the more general Theorem 2 of Masry and Fan (1997), who showed
mean-square consistency of local polynomial estimates.

LEMMA A.2 Let the kernel K satisfy the conditions (K), let (X;,Y;), t =1, ..., N, be strictly stationary and o-mixing
with mixing coefficients o, satisfying for some 8 > 0 that E{|p(Y1, ®)|**?|X| = x'} and E{L*T(Y1)|X, = x'} are
uniformly bounded for x' in some neighbourhood of x and

o0
8
X:tyotf/pﬂS < oo forsomey > 715 (A2)

t=1
Moreover, let the joint density f;(u, v) of (X1, X¢+1) as well as
E{p*(Y1,9) + p* (Y, D) X1 =", X, =x"},  E{L*(Y) + L*(¥)|X) =x', X; = x"

be bounded uniformly in t > 1 and in x' and x" in a neighbourhood of x, and let r(x, ) and €(x) be continuously
differentiable in some neighbourhood of x. Then, for N — 0o, h — 0 such that Nh — 00, we have

N N
2 Wnip e ) —r(x,9), 3 WiviL(Yy) —> ().

=1 =1



601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

Journal of Nonparametric Statistics 13

A.2. Consistency of the local quasi maximum likelihood estimate

For estimation in model (A1), we have to apply Proposition A.1 to the special case where

M
Tk — Mk
p(y,?) =logy  —¢ <y7> = log py (). (A3)
el o
is a Gaussian mixture quasi log likelihood. We restrict the admissible local parameters ¢ = (my, ..., Tpy—1, M1, ..., mpy,
o) to a compact set O satisfying in particular
O<cr <mp, |l =Cu, k=1,....M, O0<c; <0 =<C, foralld e 0. (A4)

for suitable constants ¢, Cy, ¢; and C,. Using the abbreviation

1 —
Pk(y)=—ﬂ<p<y Mk) k=1,.... M,
po(y) o o

we have, recalling thatwmyy =1 — 7y — -+ - — Ty,

9 1 1
—po(, )= —P(y) — —Pu(y), k=1,...,M—1,
Tk M

Ty
d ke
Tﬂ(y,ﬁ)= Pe(y), k=1,....M,
ek
M 2
0 1 Y — Mk
—p(y, ) = — -1 Pr(y).
ag P ) =~ ;{( ~ ) } % (y)
Using Equation (A4)and0 < Pi(y) <1, k =1, ..., M, weconclude that p is continuously differentiable with derivatives

bounded by ¢ y2 + ¢2 uniformly on ®¢ where ¢, ¢ > 0 are suitable constants:
Vo, D)l <1y’ +e2
and we immediately also have
IVr @) = IE{Vp (Y1, ®)|X1 = x}| < ct E{Y]|X1 = x} + 2.
Therefore,
Voo (y, DIl = IVo(y, 9) = Vr@)Il < c1(y* + E{YFX1 = x}) + 2c2 = L(y),

and (A4) is satisfied on ®. We conclude, combining Proposition A.1 and Lemma A.2,

THEOREM A.3  Let Yy, ..., YN be a sample of a stationary mixture of autoregressions satisfying Equation (A1) with
X: = Y;_1. Let {Y;} be a-mixing with mixing coefficients satisfying Equation (A2) for some § > 0, let the density p of the
innovations &; i be positive and continuous everywhere, and El£r,k|4+28 < o0. For given x, let E{Y14|Y0 =x,Y, =x"}
be uniformly bounded int > 1 and x', x" in some neighbourhood of x. Assume, furthermore, that the state probability
Sfunctions ﬂ?, el n}(\),,_l, the autoregression functions my, ..., mpy as well as the standard deviation function s are
continuously differentiable in a neighbourhood of x, and that s(u) > ¢, for all u € R for some constant ¢, > 0.

Let the kernel K satisfy conditions (K), let ®yC ® be compact, satisfying Equation (A4) and
(nlo(x), A JT}(\),[_l x),my(x),...,mpy(x),s(x)) =9 € Op. Furthermore, let ®¢ be small enough such that

M

r(x,z?):E{ Z% <¥)|Y —x}

=1

M T, s(x) mi(x) —
=) (x)/log [ i < Z+ kg’”)} p(2)dz (A5)
=1

has a unique global maximum in ®¢ at ¥ = ¥y. Then,

ﬁN_argmax ZK;,(x—Y, 1)log2 ( oltk)_p)ﬂo

for N — oo, h — 0 such that Nh — oo.
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Proof We have to check the assumptions of Proposition A.1, where (A1)—(A3) follow immediately from the special
form (A3) and from Equation (A4) and where we already have shown (A4). It remains to check (A5), i.e. the assumptions
of Lemma A.2.

We first remark that by monotonicity and concavity of the logarithm, we have

M
1
—log V2702 = log E ik —90) = p(y, ?)
o
k=1

M 2
Z i log — (p(y Mk) —logV2mo? — Zn (y ﬂk) .
= o

Therefore, moments and conditional moments of p(Y;, ©) exist and are bounded if this holds for the corresponding
moments of ¥?2 as long as ¢ € @.

As p is positive, continuous and integrable, it is bounded, and, therefore, the conditional density of Y; given Yo = u
satisfies

0< filyln) = Z f(fl‘;) (%uk)(”))so

for some ¢ > 0 and all u, y. The same bound applies to the stationary density f of Y] as

FO) = / FONfydu < ¢ / Fawdu=c.

and, by iteration, we get that the conditional density f;(y|u) of Y; given Yy = u is also bounded by c, as

7010 = [ Fima 10 ol dv < sup fior 1oy - [ ol dw = sup s (510,
v v
Then, for the joint density f;(u, y) of Yo, Y;, we have

fiu,y) = i) fw) < forallt > 1, u,y € R.
It remains to show that for 8 = 28
E(n[*PIvo =x), E(XMIYo=x,Y =x"}, E{Y, IYo=x Y =x"

are uniformly bounded in > 1 and x’, x” in a neighbourhood of x, where the second term is dealt with by assumption.
Using continuity of my, s and E|g; x |**+# < o0, the first property follows from

E(IY1 " |Yy = x} = / Iy fi (1) dy

(p/l o (y mk<x/>> dy
2 )
M
= Yol [ ) sl pav.
k=1

Analogously, we get the boundedness condition on
E{Y} 1Yo =xY, =x"} = E{Y} Y, = x"}.

Finally, the differentiability of r (x, ©) and £(x) follow immediately from the representation (A5) and from our assumptions
onnl,...,n,?,,_l,ml,..‘,mM,sandp. [ |

A.3. Convergence of the EM algorithm

In this section, we study the behaviour of the EM-algorithm for an increasing number p of iterations. We follow the
terminology and notation of Dempster, Laird, and Rubin (1977) and Wu (1983). Recall the definition (5) of L(¢|X, Y)
which we call the incomplete data (quasi) log likelihood. Mark that it coincides with the corresponding quantity for the
finite mixture models in Dempster et al. (1977, Example 4.3) up to the localising kernel factors Kj(x — X;). Our goal is
to maximise L(J|X, Y) w.rt. 9 € © to get estimates of n?(x), e, n}(\’,,_l (x),my(x),...,mpy(x)and s(x).
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Equation (5) is rather hard to maximise directly. If we would have observed the ‘complete’ data (X, Y;, Z;), t =

1,..., N, instead we could just maximise the corresponding complete data local conditional (quasi) log likelihood
LOIX, Y, 2) =) Kn(x — X)) Zulogimipp, o (Y0)}- (A6)
t=1 k=1
This is of a much simpler form as it separates into terms depending on 7 = (711,...,nM_1)T and on u =
(1, -y )T, o resp.

LimlX.Y.2) =Y Kn(x = X) Y Zulogmy,

M N

log(2o?)

Lo(u.0|X. Y. Z) = g7§ Kn(x — X;) — §§ Kn(x — X)) Z (Y — 1)
=1 k=1 t=1

using Z + -+ Ziy=land w4+ - -+ = 1.

Maximising L; and L, yields explicit formulas for the solutions. Setting the partial derivatives of L, to 0, we get
immediately

P SN Kn(x = X)ZnYs

, (G
YL Kn(x = X0) Zuk
N M 2
. - _1 Kn(x — X)Zye .
5 = Loz 2ot e = Yr e (A8)
Doiet Kn(x = X0)
Maximising L as functionof 7y, k = 1, ..., M, canbe regarded as a constrained optimisation problem, and an application
of a Lagrange multiplier procedure yields
N
L Knx—X)Z

YL Kn(x = Xo)
Similar to Theorem A.3, we have under appropriate conditions for N — oo
e — E{Y X, =x) = mp(0), 62— varlY X, = x} = ° (1), fx —> E{Zul X = x} = 70 (x).

However, the Z;; are not observable and therefore need to be estimated.

The basic idea of the EM algorithm is to replace L (| X, Y, Z) which contains the hidden variables Z; by its conditional
expectation given only X = (X1, ..., XN)T, Y=(,..., YN)T where the latter is calculated w.r.t. the parameter 9* of
a previous iteration. We get

Q@|0*) =E{LM®|X,Y, 2)|X,Y,0")

N M

=Y Ku(x = X0) ) E{ZulX, Y, 9"} og(miy, o (Y1)
t=1 k=1

N

M
=Y Ki(x = X0) Y 55 10g(mk .0 (V1)

=1 k=1
where

T Pt o (Y1)
G = E{ZulX, ¥, 9%} = — AT (A10)
Zl:] 77[*%1;20* (Yt)

Now, using this terminology, the EM-algorithm iterates between the following two steps:
E-step: Given D) determine Q(z?lz?”’)) i.e. determine q(p) E{Z|X,Y, 19(”)} from Equation (A10).

M-step: Set HPTD = arg maxyce 0 3®), where the components 7 D 7?1(\,;’+l]), /l(p+|), R /355“),&(1’“)

of 3T are calculated from Equations (A7), (A8) and (A9), respectively, with ;I(p ) replacing Z;.
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The M-step defines a mapping B F+D = M (HP) which obviously satisfies Q(M (9*)|9*) > Q(*|9*)
for all #* € ©. Therefore, our algorithm is a GEM algorithm in the sense of Dempster et al. (1977). We set

H@9") = Q@ 9" — L@IX, Y)

N M M
=) Ki(x = X)) { Y & loglmigu,o (V)] — log {Z nkwuk.g(Yt)} }

k=1 k=1

M
Ki(x = X0) ) &3 log &uk,
k=1

M=

using ¢ + - - 4 % = 1, and writing

Tk Pug.o (Yt)

ok =EB{Zu| X, Y, 0 = 70—
Z[Ailm‘/’u,.a(Yt)

By a corollary to Jensen’s inequality, compare formula (1€6.6) of Rao (1973) with p as the counting measure, we get
that

M o
Z ¢k log 2k >0
=1 Sk
with equality iff ¢ = ¢, k=1, ..., M. It follows as in Lemma 1 of Dempster et al. (1977)
H@*|9*) = H@|9™) (A11)

with equality iff & = ¢}, k=1,..., K, forall t with K;,(x — X;) > 0.
We conclude as in Theorem 1 of Dempster et al. (1977)

L(M®*)|X,Y) > L(®*|X,Y) forall 9* € ® (A12)

with equality iff both Q(M (9*)[9*) = Q(*|9*) and E{Z| X, Y, M(0*)} = E{Z|X, Y, 0"}, k=1,..., M, forall¢
with K (x — X;) > 0.

Equation (A12) implies that in the course of the EM algorithm the incomplete data log likelihood increases monoton-
ically, ie. LP*V|X,Y) > L(®P|X,Y), p > 0. This implies a.s. convergence of the EM algorithm to a stationary
point of L(9|X, Y).

THEOREM A4 Let N > K and Yy # Y; forall s # t. Let h be chosen such that

max Kp(x —X;) =« > 0. (A13)

min
1<ti<..<ty <N t¢{t1,....tp)
Then, all limit points of EM-sequences AN starting in arbitrary DO in the interior ©° of ©, are stationary points of

L@W|X,Y),ie,VL@W|X,Y)=0,and L(z§(p)|X, Y) converges monotonically increasing to L* = L(9*|X, Y) for some
stationary point 0*.

Proof (a) We first show that L(#|X,Y) is bounded from above and converges to —oo for ¢ — 0 uniformly in
Ty oo s TM—15 M5 oo s UM-

N M
1 29,2
L@IX, Y) =) Kp(x — X,)log (Z p————e~ Yimm)"/20 )
p = V2mo?

N M
1 V2 2
= E Kh(xXt){zlog(Znaz)Jrlog(E e~ Timm)™/20 )}

t=1 k=1

N N
1 1
<-3 ; Kn(x = Xp) logQ@mo™) — 5 — ; Kn(x — Xpe7,
where setting glz = ming—1,.._y (Y, — jz)?, we have used monotonicity of log and exp and the fact, that g, k = 1,..., M,

sum up to 1. To get an upper bound for the second term on the right-hand side, we set n = % min{|Y; — Y|, 1 <t <s <
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N} > 0 a.s. Then, foreach k = 1,..., M, we have |Y; — ux| < n for at most one ¢ = f;. Consequently, gtz > n? for all
but at most M values of ¢. Therefore, with 7 = {¢; gtz > nz},

N 2
1 n
LOIX,Y) < =5 3 Kn(x = X)) log@no?) — = 3 Kn(x = X)
t=1 teT
1 N 172
-3 le Ki(x = X;) log20?) — 5 5 max K (x — X,)
1 0’k
<=5 2Kl =X logro?) — -
=1

—> —oo foro — 0.

(b) Remarking that L is continuous in © and differentiable in ®°, Q (}|9*) is continuous in ¥ and ©¥*, and H(z9|z§(P)) is
maximized over © at 9 = 5P by Equation (A11), we can apply the same arguments as in the proof of Theorem 2 of Wu
(1983). It only remains to show that ©,+1) € ©° if () € ©° and that

Qg+ = {9 € ®; L(®|X,Y) > L(®*|X, )}

~(p)

is compact for all #* € ©. The first property follows immediately from the iterative definition of 7,"", k=1,..., M,
which are greater than O for all p and, therefore, also less than 1 for all p provided 0 < ft,io) <lfork=1,..., M. The
compactness of ®»+ follows from (a), as L is continuous, L is uniformly bounded over {¢} € ©; o> 8} forany 6 > 0
and L(9|X,Y) < L(¥*|X, Y) for any ¥ with small enough variance component o2, |

We remark that condition (A13) is always satisfied if the support of the kernel K is R like for the Gaussian kernel.
Otherwise, if K has a compact support, we have to choose % large enough such that at least M + 1 of the X; are in the
support of Kj,(x — .). Asymptotically for N — oo, this condition will hold anyhow, as the number of data in the support
will be of the order N/, which converges to oo under the usual consistency assumptions for kernel smoothers.

A.4. Constant state probabilities and variances

‘We now return to our original model (1), where n,f,)(x) = n,?, k=1,...,M,and s2(x) = ag do not depend on x. As this
is a special case of Equation (A1), the results of the previous subsections remain valid. In Section 3, we have considered a
different EM algorithm than the local one in Section A.2, taking into account explicitly the constancy of state probabilities
and innovation variance. Could be done, but lengthy only simple heuristic argument why they are asymptotically equivalent
to first order of approximation.

For that purpose, we have a look at the case where the Z; are observable, i.e. we consider the complete data quasi log
likelihood. Maximising Equation (A6), we get the localised estimates iy (x), 62(x) and A (x) given by Equations (A7),
(A8) and (A9), respectively. By straightforward arguments similar to deriving Theorem A.3, but simpler as there are no
hidden variables, we get consistency

ﬁk(x)—>n,?, mp(x) — m(x), k=1,....M, &2(x)—>002 for N — oo

under the assumptions of Theorem A.3. Analogously replacing {;x by Z; in Equations (7)—(9), we get
X
= N;Z"" k=1,....M,

YN Kn(x — XY, Zu
SN Kn(x = X)Zu

N M

- 1 -

02 = N E E etzkztk5 e =Yy — mp(Xy).
t=1 k=1

my(x) = k=1,...,M,

We see immediately that the two estimates of my, coincide: ng (x) = iy (x). From the consistency of those estimates, we
conclude e;y = Y; — myp(X;) = Yy — mp(X;) = opés if Zy = 1, and, hence, etsz,k — agssz,k, k=1,..., M, forall
t.Asonly one of the Z;, k = 1, ..., M, is non-vanishing, 52 coincides asymptotically with an average of N i.i.d. random

variables 002 stzk which converges to 0‘02 as the & have mean 0 and variance 1. Finally, from the law of large numbers for

the i.i.d. variables Z;, we have 7y — ;. Therefore, we have 7y — ¢ (x) = 0, (1) and 52 -6%(x) = 0p(1) for all x.

To transform this heuristic argument into an exact proof that the numerical algorithm of Section 3 results in consistent
estimates in case of model (1), we need some more refined asymptotics than just Theorem A.3. This will be a topic of
future research.
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