109 research outputs found

    Scenariji izobrazevanja mentorjev v Romuniji - k izboljsevanju pripravnistva uciteljev

    Get PDF
    The aim of this paper is to examine the induction programme for newly qualified teachers and mentor education in Estonia, providing a comparative analysis of existing Estonian and possible Romanian models of mentoring. While the Estonian induction programme has been in place for more than ten years, induction in Romania is a relatively new and has only been mandatory since 2011 (National Law of Education 1/2011). The specifics of mentor professional development within the Romanian induction framework have yet to be explicated. This paper proposes two possible scenarios suitable for the Romanian system :1) long-term regulated academic education (part of master or doctoral level studies), and 2) flexible short-term in-service education. The advantages and disadvantages of both models are examined and ways to overcome some of the disadvantages are identified. Ultimately, the paper proposes that a flexible, needsdriven system which encompasses a degree of choice will best fulfil the professional development needs of teachers who wish to become mentors. (DIPF/Orig.

    Academic Managers` Perspective on Research Management in Higher Education Institutions across Romania

    Get PDF
    [EN] This paper seeks to bring into discussion the main traits and their effects on the research management process within Romanian universities from the managers’ perspective. Fourteen academic managers took part in a semi-structured in-depth interview aimed at presenting and analysing the research management process in higher education institutions. The focus was on academic managers` perspective regarding the current university model, the research culture within universities and the internal strategies used to promote and stimulate research production. Results show the university should be considered an important pillar for economic growth and thus, it must invest in developing more research activities of higher quality, helping to transform knowledge into a profitable investment. Therefore, the university needs to support the development of internal strategies that will help researchers work individually or in teams in order to implement research projects, ensuring that potential inaccuracies, such as lack of institutional support or bureaucracy, are reduced.Marin, E.; Iftimescu, S.; Ion, G.; Stingu, M.; Proteasa, C. (2017). Academic Managers` Perspective on Research Management in Higher Education Institutions across Romania. En Proceedings of the 3rd International Conference on Higher Education Advances. Editorial Universitat Politècnica de València. 1185-1192. https://doi.org/10.4995/HEAD17.2017.5544OCS1185119

    Cross-Contamination Risk of Dental Tray Adhesives: An In Vitro Study

    Get PDF
    Background: The aim of this study was to investigate the risk of cross-contamination in dental tray adhesives with reusable brush systems. Methods: Four dental tray adhesives with different disinfectant components were examined for risk as a potential transmission medium for Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus oralis, and Candida albicans. Bacterial and fungal strains were mixed with artificial saliva. The contaminated saliva was intentionally added to tray adhesive liquid samples. At baseline and up to 60 min, 100 microliters of each sample were collected and cultivated aerobically on Columbia and Sabouraud agar for 24 or 48 h, respectively. Results: At baseline, contamination with Staphylococcus aureus and Candida albicans could be identified in three out of four adhesives. In the subsequent samples, low counts of up to 20 colony-forming units per milliliter could be observed for Staphylococcus aureus. All other strains did not form colonies at baseline or subsequently. Adhesives with isopropanol or ethyl acetate as disinfectant additives were most effective in preventing contamination, while adhesives with hydrogen chloride or acetone as a disinfectant additive were the least effective. Conclusion: Within 15 min, the tested adhesives appeared to be sufficiently bactericidal and fungicidal against all microorganisms tested

    HYPERACCUMULATION OF CADMIUM IN MAIZE PLANT (Zea Mays)

    Get PDF
    Maize plant responses, in terms of growth and metal uptake, to different concentrations of cadmium ions (4, 20 µM) were analyzed in a hydroponic culture, for 2 weeks. For a 4 µM cadmium-contaminated environment, the maize plant presents the highest bioaccumulation level after 192 h, with a recovery degree of 52%, meanwhile, at a 20 µM concentration, the highest bioaccumulation was registered after 366 h, with a corresponding recovery degree after 288 h (10.56%). The translocation factor presented higher values for 20 µM induced contamination than for 4 µM, which means that increasing metal concentration in the medium increased the concentration in the upper parts of the plant. Anatomical sections of a maize plant (in a 4 and 20 µM cadmium-contaminated environment) were observed to evidence the changes in plant morphological structure. The efficiency of phytoextraction is related to the metal concentration in the environment and to the plant's ability to grow on polluted soil sites, concomitantly with a high biomass yield. Keywords: heavy metal, phytoremediation, bioaccumulation, translocation factor INTRODUCTION Heavy metal contamination is a serious environmental problem that limits crop production and threatens human health through the food chain. Cadmium, one of the most toxic environmental pollutants for plants, may interfere with numerous biochemical and physiological processes -including photosynthesis, respiration, nitrogen and protein metabolism, and nutrient uptake. Phytoremediation is an in situ nondestructive technique, characterized by the utilization of hyperaccumulator plant species to remove the heavy metals from soil. The suitability of a certain plant for heavy metal remediation is determined by various plant properties, such as heavy metal tolerance, size, growth rate and rooting depth, heavy metal accumulation in aboveground plant parts and climatic adaptation and pest resistance. 1,2 The aim of this research was to evaluate the maize plant responses to cadmium stress conditions, every 48 h, for 2 weeks, and the efficiency in phytoremediation processes. EXPERIMENTAL Maize seeds (Zea mays) were sterilized in the commercial bleaching agent HOCl (1%) for 30 min and rinsed with distilled water under stirring for 10 min, the process being repeated 3 times. The seeds were placed over moist filter paper disks in Petri dishes and stored in the dark at 25 ºC, with a view to their germination. The , 5 µM Fe) with the pH adjusted 3 to 6.8. The plastic pots were covered with an aluminum foil to prevent the development of photosynthetic algae. After 5 days of germination, seedlings of maize with the same size were assembled in each hydroponic unit. The volume of nutrient solution (150 mL) was not modified throughout the experiments, to avoid the variation of metal concentrations. Every 48 h and at the end of the assay (2 weeks), the contents of cadmium in the roots, stem and leaves, as well as the growth parameters of maize plants, were determined. The plant roots were rinsed in abundant tap and distilled water ALINA STINGU et al. 288 before mineralization. Maize plants separated into roots, stems and leaves were oven-dried at 60 ºC, until constant mass was reached, and then the plant tissues were digested 4 using HNO 3 (65%) and H 2 O 2 (30%), on a hot plate at 120 ºC, for at least 5 h. The measurement of the metal content in the solution was accomplished through AAS (using a GBC Avanta 2003 Atomic Absorption Spectrophotometer). To evaluate the growth rate of the maize plant every 48 h, in a cadmium-contaminated environment, the following formula was used: growth rate, % = 100 x (growth parameters at the beginning of the experiment -growth parameters at a considered time)/growth parameters at a considered time. Spectrophotometric quantification of heavy metal concentration in maize plant tissues permitted the evaluation of cadmium bioaccumulation, translocation factor and recovery: Bioaccumulation coefficient = (cadmium concentration µg/g dry plant tissue)/(cadmium concentration µg/mL nutrient solution); 5 Translocation factor (TF) = ratio of metal concentration in shoots/ratio of metal concentration in roots; 6 Recovery, % = metal content in shoot or root/metal content in the medium. 7 At the end of the experiment, histological cross-sections were obtained for maize roots. The sections were cut manually, using microtome and elder pith as a support. The histological sections were washed in sodium hypochlorite, then in acetic acid (to eliminate the cellular content) and distilled water. The sections were coloured with iodine green (1 min), washed in 90% ethylic alcohol and distilled water, then coloured with ruthenium red (1 min) and again washed in distilled water. RESULTS AND DISCUSSION In the first hours, under 4 µM cadmium stress conditions, an increasing trend in plant growth and development was observed, the maximum growth rate being registered at 144 h. 192 h after the beginning of the experiment, the growth process seemed to stop, being resumed after 48 h. For a 20 µM cadmium-contaminated environment, the maximum growth rate was registered in the first 48 h. After 192 h, a decreasing trend in plant growth was observed. Maize plant growth rate decreased with increasing cadmium concentration in the growth medium Cadmium concentration (μg/g dry mass) and content (μg/plant) in maize plant presented different values, as depending on metal contamination level. The highest values for cadmium concentration and content (390.04 μg/plant), under 4 µM stress conditions (15430.99 μg/g), were registered at 192 h. Reported to the 20 µM cadmiumcontaminated environment, the highest metal content (395.82 μg/plant) and concentration (22443.54 μg/g) were recorded at 228 and 336 h. These results could be correlated with the plant growth rat

    Attachment of Respiratory Pathogens and Candida to Denture Base Materials—A Pilot Study

    Get PDF
    Denture prostheses are an ideal and extensive reservoir for microorganisms to attach to their surfaces. The aim of the study was to elucidate interactions between materials for the fabrication of denture bases and the attachment of microorganisms, focusing on respiratory pathogens and Candida species. Specimens (6 mm × 1 mm) with a standardized surface roughness (Sa = 0.1 µm) were prepared from heat-pressed polymethyl methacrylate (PMMA), CAD/CAM-processed PMMA, and CAD/CAM-processed polyether ether ketone (PEEK). The specimens were randomly placed in the vestibular areas of complete upper dentures in seven patients and were removed either after 24 h without any oral hygiene measures or after a period of four weeks. The microorganisms adherent to the surface of the specimens were cultivated and subsequently analyzed using mass spectrometry (MALDI-TOF). The means and standard deviations were calculated, and the data were analyzed using a two-way analysis of variance (ANOVA) and Tukey post-hoc test where appropriate (α = 0.05). There was a significant increase (p ≤ 0.004) in the total bacterial counts (CFU/mL) between the first (24 h) and the second (four weeks) measurements. Regarding quantitative microbiological analyses, no significant differences between the various materials were identified. Respiratory microorganisms were detected in all samples at both measurement time points, with a large variance between different patients. Only after four weeks, Candida species were identified on all materials but not in all participants. Candida species and respiratory microorganisms accumulate on various denture base resins. While no significant differences were identified between the materials, there was a tendency towards a more pronounced accumulation of microorganisms on conventionally processed PMMA

    Training on Evidence-Informed Practice for School Inclusion

    Get PDF
    Altres ajuts: This document was written under the framework of the Project 'Evidence-Informed Practice for School Inclusion [EIPSI] (2020-1-ES01-KA201-082328)'. Project funded under the Erasmus+ Strategic Partnership ProgramThe purpose of the Training on Evidence-Informed Practice for School Inclusion is to familiarize teachers and other educational stakeholders with the evidence-informed practice approach and to support them to develop the necessary skills and knowledge to facilitate them work in diverse schools' settings

    Comparative transcriptomic analysis reveals the coordinated mechanisms of Populus × canadensis ‘Neva’ leaves in response to cadmium stress

    Get PDF
    Cadmium (Cd), a heavy metal element has strong toxicity to living organisms. Excessive Cd accumulation directly affects the absorption of mineral elements, inhibits plant tissue development, and even induces mortality. Populus × canadensis ‘Neva’, the main afforestation variety planted widely in northern China, was a candidate variety for phytoremediation. However, the genes relieving Cd toxicity and increasing Cd tolerance of this species were still unclear. In this study, we employed transcriptome sequencing on two Cd?treated cuttings to identify the key genes involved in Cd stress responses of P. × canadensis ‘Neva’ l induced by 0 (CK), 10 (C10), and 20 (C20) mg/L Cd(NO3)2 4H2O. We discovered a total of 2,656 (1,488 up-regulated and 1,168 downregulated) and 2,816 DEGs (1,470 up-regulated and 1,346 down-regulated) differentially expressed genes (DEGs) between the CK vs C10 and CK vs C20, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses in response to the Cd stress indicated that many DEGs identified were involved in the catalytic activity, the oxidoreductase activity, the transferase activity, and the biosynthesis of secondary metabolites. Based on the enrichment results, potential candidate genes were identified related to the calcium ion signal transduction, transcription factors, the antioxidant defense system, and transporters and showed divergent expression patterns under the Cd stress. We also validated the reliability of transcriptome data with the real-time PCR. Our findings deeper the understanding of the molecular responsive mechanisms of P. × canadensis ‘Neva’ lon Cd tolerance and further provide critical resources for phytoremediation applications

    Outcome Prediction in Pneumonia Induced ALI/ARDS by Clinical Features and Peptide Patterns of BALF Determined by Mass Spectrometry

    Get PDF
    BACKGROUND: Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and may be superior for outcome prediction. METHODOLOGY/PRINCIPAL FINDINGS: A training group of patients suffering from ALI/ARDS was compiled from equal numbers of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray's lung injury severity score (Murray's LISS) and interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS). Receiver operating characteristic (ROC) analysis for each clinical and cytokine parameter revealed interleukin-6>interleukin-8>diabetes mellitus>Murray's LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4% accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree (CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray's LISS, interleukin-6 and interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity. CONCLUSIONS/SIGNIFICANCE: MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can be of value in predicting outcome in pneumonia induced ALI/ARDS

    Prospects for the development of probiotics and prebiotics for oral applications

    Get PDF
    There has been a paradigm shift towards an ecological and microbial community-based approach to understanding oral diseases. This has significant implications for approaches to therapy and has raised the possibility of developing novel strategies through manipulation of the resident oral microbiota and modulation of host immune responses. The increased popularity of using probiotic bacteria and/or prebiotic supplements to improve gastrointestinal health has prompted interest in the utility of this approach for oral applications. Evidence now suggests that probiotics may function not only by direct inhibition of, or enhanced competition with, pathogenic micro-organisms, but also by more subtle mechanisms including modulation of the mucosal immune system. Similarly, prebiotics could promote the growth of beneficial micro-organisms that comprise part of the resident microbiota. The evidence for the use of pro or prebiotics for the prevention of caries or periodontal diseases is reviewed, and issues that could arise from their use, as well as questions that still need to be answered, are raised. A complete understanding of the broad ecological changes induced in the mouth by probiotics or prebiotics will be essential to assess their long-term consequences for oral health and disease
    corecore