33 research outputs found

    An (E,E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles

    Get PDF
    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)-a-farnesene. GmAFS is closely related to (E,E)-a-farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN-resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN-susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN-susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticate (two-spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography–mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)-a-farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below-ground and above-ground organs of soybean against nematodes and insects, respectively

    Field-Grown Transgenic Switchgrass (Panicum virgatum L.) with Altered Lignin Does Not Affect Soil Chemistry, Microbiology, and Carbon Storage Potential

    Get PDF
    Cell wall recalcitrance poses a major challenge on cellulosic biofuel production from feedstocks such as switchgrass (Panicum virgatum L.). As lignin is a known contributor of recalcitrance, transgenic switchgrass plants with altered lignin have been produced by downregulation of caffeic acid O-methyltransferase (COMT). Field trials of COMT-downregulated plants previously demonstrated improved ethanol conversion with no adverse agronomic effects. However, the rhizosphere impacts of altering lignin in plants are unknown. We hypothesized that changing plant lignin composition may affect residue degradation in soils, ultimately altering soil processes. The objective of this study was to evaluate effects of two independent lines of COMT-downregulated switchgrass plants on soils in terms of chemistry, microbiology, and carbon cycling when grown in the field. Over the first two years of establishment, we observed no significant differences between transgenic and control plants in terms of soil pH or the total concentrations of 19 elements. An analysis of soil bacterial communities via high-throughput 16S rRNA gene amplicon sequencing revealed no effects of transgenic plants on bacterial diversity, richness, or community composition. We also did not observe a change in the capacity for soil carbon storage: There was no significant effect on soil respiration or soil organic matter. After five years of establishment, δ13C of plant roots, leaves, and soils was measured and an isotopic mixing model used to estimate that 11.2 to 14.5% of soil carbon originated from switchgrass. Switchgrass-contributed carbon was not significantly different between transgenic and control plants. Overall, our results indicate that over the short term (two and five years), lignin modification in switchgrass through manipulation of COMT expression does not have an adverse effect on soils in terms of total elemental composition, bacterial community structure and diversity, and capacity for carbon storage

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Reproducibility and reliability assays of the gene expression-measurements

    No full text
    BACKGROUND: Reliability and reproducibility are key metrics for gene expression assays. This report assesses the utility of the correlation coefficient in the analysis of reproducibility and reliability of gene expression data. RESULTS: The correlation coefficient alone is not sufficient to assess equality among sample replicates but when coupled with slope and scatter plots expression data equality can be better assessed. Narrow-intervals of scatter plots should be shown as a tool to inspect the actual level of noise within the data. Here we propose a method to examine expression data reproducibility, which is based on the ratios of both the means and the standard deviations for the inter-treatment expression ratios of genes. In addition, we introduce a fold-change threshold with an inter-replicate occurrence likelihood lower than 5% to perform analysis even when reproducibility is not acceptable. There is no possibility to find a perfect correlation between transcript and protein levels even when there is not any post-transcriptional regulatory mechanism. We therefore propose an adjustment for protein abundance with that of transcript abundance based on open reading frame length. CONCLUSIONS: Here, we introduce a very efficient reproducibility approach. Our method detects very small changes in large datasets which was not possible through regular correlation analysis. We also introduce a correction on protein quantities which allows us to examine the post-transcriptional regulatory effects with a higher accuracy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2241-5793-21-3) contains supplementary material, which is available to authorized users

    Data from: Evolution and spread of glyphosate resistance in Conyza canadensis in California

    No full text
    Recent increases in glyphosate use in perennial crops of California, USA, are hypothesized to have led to an increase in selection and evolution of resistance to the herbicide in Conyza canadensis populations. To gain insight into the evolutionary origins and spread of resistance and to inform glyphosate resistance management strategies, we investigated the geographical distribution of glyphosate resistance in C. canadensis across and surrounding the Central Valley, its spatial relationship to groundwater protection areas (GWPA), and the genetic diversity and population structure and history using microsatellite markers. Frequencies of resistant individuals in 42 sampled populations were positively correlated with the size of GWPA within counties. Analyses of population genetic structure also supported spread of resistance in these areas. Bayesian clustering and approximate Bayesian computation (ABC) analyses revealed multiple independent origins of resistance within the Central Valley. Based on parameter estimation in the ABC analyses, resistant genotypes underwent expansion after glyphosate use began in agriculture, but many years before it was detected. Thus, diversity in weed control practices prior to herbicide regulation in GWPA probably kept resistance frequencies low. Regionally coordinated efforts to reduce seed dispersal and selection pressure are needed to manage glyphosate resistance in C. canadensis

    Final ethanol yield (mg g<sup>-1</sup> biomass) of lemongrass and palmarosa biomass that was (EX) or was not (NE) previously extracted for essential oils in comparison to two lots of BioEnergy Science Center (BESC) control switchgrass.

    No full text
    <p>A) Final ethanol concentration of biomass that was not pretreated in fermentation liquids. B) Final ethanol yield (mg g<sup>-1</sup> biomass) of dilute acid pretreated lemongrass and palmarosa biomass that was (EX) or was not (NE) extracted for essential oils in comparison to lot #1 BESC control switchgrass.</p
    corecore