39 research outputs found

    The Archive of the Amateur Observation Network of the International Halley Watch

    Get PDF
    The International Halley Watch (IHW) was organized for the purpose of gathering and archiving the most complete record of the apparition of a comet, Comet Halley (1982i = 1986 III = 1P/Halley), ever compiled. The redirection of the International Cometary Explorer (ICE), toward Comet Giacobini-Zinner (1984e = 1985 XIII = 21P/Giacobini-Zinner) prompted the initiation of a formal watch on that comet. All the data collected on P/Giacobini-Zinner and P/Halley have been published on CD-ROM in the Comet Halley Archive. This document contains a printed version of the archive data, collected by amateur astronomers, on these two comets. Volume 1 contains the Comet Giacobini-Zinner data archive and Volume 2 contains the Comet Halley archive. Both volumes include information on how to read the data in both archives, as well as a history of both comet watches (including the organizing of the network of astronomers and lessons learned from that experience)

    The Archive of the Amateur Observation Network of the International Halley Watch

    Get PDF
    The International Halley Watch (IHW) was organized for the purpose of gathering and archiving the most complete record of the apparition of a comet, Halley's Comet (1982i = 1986 III = 1P/Halley), ever compiled. The redirection of the International Sun-Earth Explorer 3 (ISEE-3) spacecraft, subsequently renamed the International Cometary Explorer (ICE), toward Comet Giacobini-Zinner (1984e = 1985 XIII = 21P/Giacobini-Zinner) prompted the initiation of a formal watch on that comet. All the data collected on P/Giacobini-Zinner and P/Halley have been published on CD-ROM in the Comet Halley Archive. This document contains a printed version of the archive data, collected by amateur astronomers, on these two comets. Volume 1 contains the Comet Giacobini-Zinner data archive and Volume 2 contains the Comet Halley archive. Both volumes include information on how to read the data in both archives, as well as a history of both comet watches (including the organizing of the network of astronomers and lessons learned from that experience)

    The Archive of the Amateur Observation Network of the International Halley Watch

    Get PDF
    The International Halley Watch (IHW) was organized for the purpose of gathering and archiving the most complete record of the apparition of a comet, Halley's Comet (1982i = 1986 III = 1P/Halley), ever compiled. The redirection of the International Sun-Earth Explorer 3 (ISEE-3) spacecraft, subsequently renamed the International Cometary Explorer (ICE), toward Comet Giacobini- Zinner (1984e = 1985 XIII = 21P/Giacobini-Zinner) prompted the initiation of a formal watch on that comet. All the data collected on P/Giacobini-Zinner and P/Halley have been published on CD-ROM in the Comet Halley Archive. This document contains a printed version of the archive data, collected by amateur astronomers, on these two comets. Volume 1 contains the Comet Giacobini-Zinner data archive and Volume 2 contains the Comet Halley archive. Both volumes include information on how to read the data in both archives, as well as a history of both comet watches (including the organizing of the network of astronomers and lessons learned from that experience)

    Finding Earth clones with SIM: The most promising near-term technique to detect, find masses for, and determine three-dimensional orbits of nearby habitable planets

    Get PDF
    SIM is a space astrometric interferometer capable of better than one-microarcsecond (”as) single measurement accuracy, providing the capability to detect stellar "wobble" resulting from planets in orbit around nearby stars. While a search for exoplanets can be optimized in a variety of ways, a SIM five-year search optimized to detect Earth analogs (0.3 to 10 Earth masses) in the middle of the habitable zone (HZ) of nearby stars would yield the masses, without M*sin(i) ambiguity, and three-dimensional orbital parameters for planets around ~70 stars, including those in the HZ and further away from those same stars. With >200 known planets outside our solar system, astrophysical theorists have built numerical models of planet formation that match the distribution of Jovian planets discovered to date and those models predict that the number of terrestrial planets (< 10 M_⊕) would far exceed the number of more massive Jovian planets. Even so, not every star will have an Earth analog in the middle of its HZ. This paper describes the relationship between SIM and other planet detection methods, the SIM planet observing program, expected results, and the state of technical readiness for the SIM mission

    Taking the Measure of the Universe: Precision Astrometry with SIM PlanetQuest

    Get PDF
    Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument that delivers parallaxes at about 4 microarcsec on targets as faint as V = 20, differential accuracy of 0.6 microarcsec on bright targets, and with flexible scheduling. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed all of the enabling technologies needed for the flight instrument in 2005. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. SIM will search for planets with masses as small as an Earth orbiting in the `habitable zone' around the nearest stars using differential astrometry, and could discover many dozen if Earth-like planets are common. It will be the most capable instrument for detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion measurements, SIM will probe the galactic mass distribution and the formation and evolution of the Galactic halo. (abridged)Comment: 54 pages, 28 figures, uses emulateapj. Submitted to PAS

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    Heterotrophic plate count bacteria—what is their significance in drinking water?

    Get PDF
    While the literature documents the universal occurrence of heterotrophic plate count (HPC) bacteria in soils, foods, air, and all sources of water, there is a lingering question as to whether this group of organisms may signal an increased health risk when elevated populations are present in drinking water. This paper reviews the relevant literature on HPC bacteria in drinking water, the lack of clinical evidence that elevated populations or specific genera within the HPC flora pose an increased health risk to any segment of the population, and the appropriate uses of HPC data as a tool to monitor drinking water quality changes following treatment. It finds no evidence to support health-based regulations of HPC concentrations
    corecore